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PREFACE TO FIRST EDITION.

IN the present Work I have endeavoured, without exceed-

ing the usual size of an Elementary Treatise, to give a

comprehensive account of the Analytical Geometry of the

Conic Sections, including the most recent additions to the

Science.

For several years Analytical Greometry has been my
special study, and some of the investigations in the more

advanced portions of this Treatise were first published in

Papers written by myself. These include : finding the

Equation of a Circle touching Three Circles
;
of a Conic

touching Three Conies
; extending the equations of Circles

inscribed and circumscribed to Triangles to Circles in-

scribed and circumscribed to Polygons of any number of

sides
;
the extension to Conies of the properties of Circles

cutting orthogonally ; proving that the Tact-invariant of

two conies is the product of Six Anharmonic Ratios
;
and

some others.

Of the Propositions in the other parts of the Treatise,

the proofs given will be found to be not only simple and

elementary, but in some instances original.

In compiling my Work I have consulted the writings of

various authors. Those to whom I am most indebted are :

SALMON, CHASLES, and CLEKSCH, from the last of whom I

have taken the comparison of Point and Line and Line

Co-ordinates (Chapter II., Section III.) ; and Aronhold's
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notation (Chapter VIII., Section III.), now published for

the first time in an English Treatise on Conic Sections.

For recent Geometry, the writings of BROCARD, NEUBERG,
LEMOINE, M'CAY, and TUCKER.

The exercises are very numerous. Those placed after

the Propositions are for the most part of an elementary

character, and are intended as applications of the proposi-

tions to which they are appended. The exercises at the

ends of the chapters are more difficult. Some have been

selected from the Examination Papers set at the Uni-

versities, from Roberts' examples on Analytic Q-eometry,

and Wolstenholme's Mathematical Problems. Some are

original ;
and for a very large number I am indebted to

my Mathematical friends Professors NEUBERG, R. CURTIS,

s.j., CROFTON, and the Messrs. J. and F. PURSER.

The work was read in manuscript by my lamented and

esteemed friend, the late Rev. Professor TOWNSEND, F.R.S. ;

by Dr. HART, Vice-Provost of Trinity College, Dublin ;

and Professor B. WILLIAMSON, F.R.S. Their valuable

suggestions have been incorporated.

In conclusion, I have to return my best thanks to the

last-named gentleman for his kindness in reading the

proof sheets, and to the Committee of the "DUBLIN

UNIVERSITY PRESS SERIES" for defraying the expense of

publication.

JOHN CASET.

86, SOUTH CIBCULAE KOA.D, DUBLIN,

October 5, 1885.



PREFACE TO SECOND EDITION.

THE present edition is entirely the work of my father-in-law,

the late Dr. CASEY, F.R.S. At the time of his death, in

1891, he had seen nearly 400 pages of it through the

press, and left me the responsibility of bringing out the

remainder.

In the preparation of this edition Dr. CASEY had the

valuable assistance of Professor NEUBERG of the Univer-

sity of Liege, who sent him numerous important theorems,

notes, and suggestions, almost all of which he adopted.

Knowing that Professor NEUBERG was Dr. CASEY'S inti-

mate friend and constant correspondent, and that he had

assisted him in correcting all the proof-sheets of what

had been printed prior to his death, I naturally turned to

him for advice and aid before proceeding with the printing

of the remaining portion. He most willingly promised

me his valuable assistance. Having revised the proofs,

I submitted them to him, and he had the kindness to

correct them and approve of them, before they were

printed off.

For all his generous help and advice I beg to re-

turn Professor NEUBERG my grateful acknowledgments
and very sincere thanks. I have also to thank the

Eev. EGBERT CURTIS, s.J., F.R.U.I., for many useful sug-

gestions, and for the trouble he took in revising the

proofs.
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My best thanks are also due to the Board of Trinity

College, Dublin, for the generous manner in which, on

the death of Dr. CASEY, they undertook to defray all the

expense of publication.

The first edition contained 330 pages, the present ex-

tends to 564 pages. All parts have been very carefully

revised; the proofs are very rigid, though simple and

concise. The principal additions will be found in the

theory of " Mean Centre," of " Anharmonic Ratios," of
"
Homographic Division and Involution," of " Recent

Geometry," and in the Chapter on " The Invariant Theory
of Conies." This last theory is expounded with more

developments than in perhaps any other Classic work on

the subject. The Exercises have also been considerably

increased, many of those added being original.

In conclusion I trust that this new edition, enriched by
the results of the latest progress of Analytical Geometry,
will receive from the public the same favourable reception

accorded to the first.

P. A. E. BOWLING, B.A., B.U.L,

Professor of Mathematics, University College, Dublin .

4, UXBEIDGE-TEERACE, LEESON

DUBLIN, January 1st, 1893.
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CHAPTER I.

THE POINT.

SECTION I. RULE OF SIGNS. RESULTANTS. -PROJECTIONS.

1. RULE OF SIGNS. When we consider several points A, B, C,

. . . upon the same right line, in order to render formulae general,

it is necessary that the segments comprised between these points

may be submitted to a rule of signs.

The segment denoted by AB is supposed to be described by
a point moving from A its origin, to B its extremity. The

segment BA by a point moving from B towards A, B being

origin, and A extremity. All the segments described in the

same sense are positive. Those in the opposite are negative.

Hence it follows from this convention that AB = - BA.
PROP. If A, B . . . K, L be any system ofpoints on a line

AB + BC+ . . . KL + LA = 0, (1)

In fact if the moving point describe in succession the segments

AB, BC . . . LA, it commences at A and returns to A. Hence

it describes as much in the negative as in the positive directions.

Hence the sum is zero.

Cor. 1. If 0, A, B be three collinear points, AB = OB- OA .

For OA + AB + BO = Q; .-. AB = OB- OA. (2)

This equality serves to refer all segments on the same line to a

common origin.

Cor. 2. If M be the middle point of AB

OM= \(OA + OB\ OAOB = OM2 -
JAB\



The Point.

Demonstration. OA +AM+ MO = 0, OS +BM+MO = 0.

Adding, and observing that AM + BM = 0, we get

OA + OB + 2MO = 0. Hence OM=$(OA+OB\ (3)

Again, from (1), we have

OA = OM- AM, OB = OM- BM= OM+ AM.

Hence OA.OB = OMZ - AM2 = OM* -
(4)

2. SIGNS OF AREAS. The notation OAB denotes the area

described by the line OM,

turning round in such a

manner that its extremity M
describes the line AB in the

direction AB, or, in other

words, OA is turned round in

the direction indicated by the

arrow. Then, if we make the

convention that the area OAB
is positive, then the area OBA, which is described in the opposite

direction, viz., from OB to OA, is negative. Hence we have

the following :

RULE. The notation ABC denotes the absolute value of the

area of the triangle ABC taken with the sign + or the sign -,

according as the rotation ABC is in the positive or the negative

sense. Hence we have ABC = BCA = CAB = - A CB = - BA C
= - CBA.

3. GEOMETRIC SUM OR RESULTANT. DBF. Being given several

segments A^B^ . A 2By . . . A nBn . If we draw the lines OC\ .

Ci Cz . . . C>,_i <?, respectively equal and parallel to A^B^, A^BZ

. . . A nBn , and in the same sense the line OCn is called the resultant

of the segments.

PROP. The magnitude and the direction of the resultant of

several segments is independent of the order of sequence of these

and of the origin.
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1. For, drawing Ci C parallel and equal to A 3B3 ,
the figure

dCzC3C is a parallelogram, then CC, is equal and parallel to

A ZBZ . Hence in this construction it is evident we invert the

order of sequence of drawing parallels to A^By, AtB3 . Similarly,

we can invert the order for any two consecutive segments, and

therefore we can take the segments in any order whatever.

2. Taking a different origin 0', and drawing O'C,', d'CJ,
C2'C3 . . . equal and parallel to A-JS^ A ZB2 . . . then the

figures OQCiO', C C2 C2
'

<?/ . . . are parallelograms. Therefore

the lines 00', C^C^ . . . Cn Cn'

are equal and parallel. Hence

Cn ,
0' Cn'

are equal and parallel.

4. PROJECTIONS. The projection of the resultant of several

segments upon any axis is equal to the sum of the projections of

these segments upon that line.

Dem. If o, Ci, c2 . . . be the projections of the points 0, C^
Cz . . . we have

+ Cn.]_Cn + CnO - 0.C2 C3

Hence . +

But two equal and parallel lines have parallel and equal

projections, and of the same sign. Hence projection of OCn =

projection of A^Bi + projection of AZBZ . . . + projection oiAnBn .

Cor. The projections may be oblique, that is, the projecting

lines can be parallel and inclined at any angle to the axis.

B 2
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PEOP. The projection of a segment AB upon any axis OX in

equal in magnitude and sign to the product ofAB by the cosine

of the angle of the positive directions of the axis, and of the line

projected.

Dem. Let A'B' be the projection of AB upon OX.

Draw AB" parallel to OX. Suppose AB positive. If we make

AB turn round A, the sign of AB" is always equal to that of

the cosine of the angle B"AB-, also in absolute values A'B' =

AB cos B"AB. If AB is

negative, the angle of posi-

tive direction of OX and

AB is equal to the angle

B"AB TT. Hence the

cosine changes sign. Hence

the proposition follows.

Cor. If the projec-

tants AA', BB' make an

angle 6 with OX, we have

(5)

SECTION II. CARTESIAN CO-ORDINATES.

DEFINITION i. Two fixed fundamental lines XX', YY1
in a

plane, which are used for the purpose of defining the posi-

tions of all figures that may be drawn in the plane, are called

axes. When these are at right

angles to each other they arc

called rectangular axes, other-

wise they are called oblique axes, x
DBF. ii. The lines XX',

YY1
are called respectively the

axis of abscissa, and the axis of i

ordinatet. XX' is also called, for reasons that will appear

further on, the axis of x, and YY1

the axis of y.



Cartesian Co-ordinates.

DEF. in. The point 0, the intersection of the axes, is

called the origin.

DEF. rv. The origin divides each axis into two parts, one

positive, the other negative. Thus X'X is divided into tht

parts OX, OX', of which OX measured to the right is usually

considered positive, and OX1

negative, because it is measured

in the opposite direction. Similarly the upward direction, OY,
is regarded as positive, and the downward, OY, negative.

When the axes are oblique the angle XOY between their

positive directions is denoted by to. The axes will be rect-

angular unless the contrary is stated.

DEF. v. Any quantities serving to define the position of a

point in a plane are called its co-ordinates. Three different

systems of co-ordinates are in use, namely parallel or Cartesian

(called after Descartes, the founder of Analytic Geometry),

Polar, and Trilinear co-ordinates.

DEF. vi. The Cartesian co-ordinates of a point P are found

thus : Through P draw PM parallel to Y; then the lines

OM, MP are the co-ordinates of

P; and since OM is measured

along OX it is positive, and MP
parallel to OY is also positive.

Thus both co-ordinates of P are

positive. Similarly the co-ordi-

nates of R, viz., ON', N'R are

both negative ;
and lastly, the

points Q, S have each one co-ordinate positive and the other

negative.

DEF. vri. The Cartesian co-ordinates of a known or fixed

point are usually denoted by the initial letters of the alphabet,

such as a, I. They are also denoted by the letters x, y, with

accents or suffixes, thus : x', y' ; x", y", &c.
;
xit yl ; x, t yt,

&c.

X iM' N"

O
M
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The co-ordinates of an unknown or of a variable point are

denoted by the final letters, such as #, y, without either

accents or suffixes, and sometimes by the Greek letters a, ft ;

but these are more frequently employed in trilinear co-ordi-

nates, which will be explained further on.

5. To find the distance 8 between two points in terms of their

co-ordinates.

1. Let the axes be rectangular.

Let A, B be the points, x' y',

x" y" their co-ordinates. Draw

BC parallel to OX; AD, BE
parallel to OY. Then, since

the co-ordinates of A are x1

y',

we have

OD = x', DA =
y'.

Similarly OE = x", EB =
y".

Hence BC = x> -
x", CA =

y'
-
y" ;

but AB* = BC*+ CA*;

therefore S2 = (x
1 -

x"}
z + (y

1 -
y"}\ (6)

Hence we have the following rule : Subtract the x of one

point from the x of the other, also the y of one point from the y of

the other ; then the sum of squares of the remainders is equal

to the square of the required distance.

2. Let the axes be oblique.

Since the angle ACB is the supplement of XOY, we have

ACB= 180 -a).

Hence AB* = C* + CA* + <2BC . CA cos o>,

that is, Ss =
(x'

- y>J + (y'
-

y'')* + 2 (x
1 -

x") (y'
-

/") cos o>. (7)
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In applying these formulae it is necessary to take the signs

of x', y' x", y" ;
cos to into account.

Thus, in the annexed figure,

E

+ AC3 - 2C5 .ACcosZCA.

But AC=A+JEC=y'+ (- y") = y
1 -

y",

CB = OD - OE = x' - x".

Hence substituting we get equation (7).

In practice, oblique axes are seldom -employed ;
but as they

sometimes are, we shall give the principal formulae in both

forms.

EXERCISES.

1. Find the distance of the point x'y' from the origin

l
e

. When the axes are rectangular. Ana. 52 = *'2 + y'
2

. (8)

2. When they are oblique. Ana. 82 = a;'
2
-f y'^ + lx'tf cosw. (9)

2. Find the distance between the points (rcosfl', rsinfl'), (r cos 6", rein 6").

Ans. 5 = 2rsinJ(0'-0"). (10)

3. Find the distance between the points (--;> 0|> |0, --^).

1. When the axes are rectangular. Ans. $ = -
AH

z
. (11)

2. When oblique. Ans. 5 = -j= <JA*+ * + 2AE coa u. (12)
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4. If the axes be rectangular determine y

1. If the distance between the points (5, y), (2, 3) be equal to 5.

Ans. 19 or - 3.

2. If the distance between (2, y), (4,
-

5) be V68.

Ana. 3 or 13.

5. Find the distance between the points {a cos (o + 0), b sin (a + )},

{
a cos (a

-
j8), b sin (o

-
0) } .

An*. 8 = 2 sin $ (a
2 sin2 a + *2 cos2a}*. (13)

DBF. The line joining two points will for shortness be called the join of

the two points.

6. Find the condition that the join of the points x'y', x"y" may subtend

a right angle at xy. Since the triangle formed by the three points is right-

angled, the square on one side is equal to the sum of the squares on the

other two. Hence

(x'
- x y + (y'

- y"? = (x- x'Y + (y- y')
2 + (*

-
*")

z + (V~ y")
2

;

und reducing, we get

(*
-

*') (*
-

*") + (y
-

y') (y
-

y") = 0. (14)

If the axes be oblique, the condition is

(*
-

*") (*
-

*") + (y
-

y') (y
-
y")

')} cosw=0. (15)

6. To find the condition that three points x'y', z"y", x'"y'"

shall be collinear.

Let A, ,
C be the points : drawing parallels we have, from

similar triangles, BD : AD : : CE:EB.

Hence
-y

(16)

or (x'y"
-*y ) + (x"y'

" -
x'"y") + (*'"/

- o. (17)
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This may be written in the form of the determinant

= 0. (18)*", y", 1,

x'", y"', 1,

7. This proposition may be proved otherwise, and . by a

method which will connect it with another of equal impor-

tance.

LEMMA. The area of the triangle whose summits are x'y', x"y",

and the origin is % (x'y"
-

x"y') sin w.

Dem. Through the points

x'y', x"y" draw parallels to

the axes
;
then the parallelo-

grams ODCE, OGFH are re-

spectively equal to x'y" sin w,

x"y' sin w. Hence the tri-

angle OA, which is evi-

dently equal to half the dif-

fcrence of these parallelo-

H

o

A r ,

ocy

D

grams, s

(x'y"
-

x"y'} sin <o.

Cor 1 . If the axes be rectangular, the triangle

(19)

(20)

To apply this, let A, ,
C be three collinear points. Join

OA, OB, 00; then we have A OAB + A 0C= A OAC;



10 The Point.

therefore x'y"
-

x"y' + x"y"'
-
x'"y" = x'y'"

-
x'"y',

or (x'y"
-

x"y'} + (x"y"'
~

*"'y") + (*'Y - *V") = -

8. The Lemma of 7 enables us to find the area of a triangle

in terms of the co-ordinates of its summits.

For, if any point within the triangle be taken as the origin

of rectangular axes, and the co-ordinates of the vertices be

x'y
1

, x"y", x'"y'", then join OA, OS, OC. Since the triangle

AC = OA + 03C + OCA,
we have

-x'"y
ef + x"t

y
f

-x'y"'}, (21)

or *", y", 1,

x"', y'", 1,

(22)

It is evident that we get the same result if we take the

origin outside the triangle by attending to the signs of the

areas (see 2).

From this proposition it follows that the geometrical interpre-

tation of the condition that three points should be collinear is,

that the area of the triangle formed by them is zero.

9. The area of any polygon, in terms of the co-ordinates of its

summits, is

fc{(*iy- a! yO+(*y-*sy)+' (*yi-*iy)}- (
23 )

For, let ABCDEF be any closed non-intersecting polygon,

whatever may be the point 0, we have area = OAB + OBC
+ . . . OFA, whence we get the formula (23).
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If it be an intersecting polygon (Polygone etoile), by defini-

tion its area is OAB + OBC . . . OFA
;
but in this case it is

necessary to verify that the origin may be any whatever, we
have

OAB = O'OA + O'AB + O'BO,

OBC = O'OB + 0'BC + O'CO . . .

Adding these equalities, and remarking that OrBO = - 0' OB, &c.,

we get

OAB + OBC . . . + OFA = O'AB + O'BC . . . + O'FA.

EXERCISES.

Find the areas of the triangles whose summits are

1. (1,2); (3,4); (5,2). 2. (3,4); (5,3); (6,2).

3. (- 5, 4) ; (- 6, 5) ; (6, 2). 4. (2, 1) ; (3,
-

2) ; (- 4,
-

1).

Substitute the co-ordinates in equation (21), and we get

I
*', y' 1,

2area = -
CIA, o, i,

0, -GIB, 1,

= Cx'jB + Cy'\A + CZIAB = C(Ax' + By' + C)lAB. (24)

6. (at'
z
, 2at'), (at'"*, lat"), at'"*, 2at"').

Ans. - a* (f
-

i") (t"
-

t'") (t'"
-

t'). (25)

7. {at'f, a(t'+t")} ; {at"t"', a (t" + t'")} ; {at"'t', a(t'" + t')}.

Ans. Half the area of Ex. 6.
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8. (a cos <p',
b sin

</>'), (a cos*", baintp"), (acos<j>'",

Ans. 2absin (>'-$>") sin J ($>" -<'") sin ($'

9. (k tan $>,
&

', kcot<j>'), (k tan 0",

4/t2
sin ((p -"<') sin ($'.- <(>") sin i

sin 2$ sin 2<p' sin
2<f>'

(26)

(27)

10. Let there be upon the same right line two fixed points,

A, B, and a variable point C, the quotient, y A B X
CA/CH is called the ratio of section of the '

~
'

point C. and is denoted by (AS, C}. When C moves from A
to B the ratio (AJB, 0} is negative, and varies continuously

from to = oo. When C moves along BX we have CAj CB
= (CB + BA)jCB = 1 + BA\CB. This ratio is +, and varies

from + oo to 1. When C moves upon AY we have CAjCB
= (CB - AB}jCB = 1 - AB[CB, the ratio is +, and varies

from to 1. From this discussion it follows 1 that the ratio

of section (AB, C} can take all values positive and negative, and each

only once ; 2 that the point at infinity upon the line corresponds to

a ratio of section equal to + 1, the middle ofAB to a ratio equal to

1, and the points A, B to ratios equal to and oo.

11. To find the co-ordinates of the point which divides in a given

ratio -
l/m, the join of two points, x'y', z"y".

If A, B be the given points, let C be the point of division,

xy its co-ordinates
; then, drawing parallels, we have

l__CA _ C'A' OA'-OC
m~ CB~ C'B'

~
OB' - OC

Ix" + mx'

B .,

therefore x =
+ m

. ., , ly"+my'\
imilarly, y = i -JL\

X - X
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If the join of the two points be cut externally, we get

I x - x'

m x - x"'

Ix" -mx'\Hence x =
^
I m

- (29)

ly"-my'{and -

y = Z- 5.

I - m I

Cor. 1. If the ratio l/mbe denoted by Xj we have

Hence, by varying X we get the co-ordinates of any point in the

line AB, in terms of a single parameter X.

Cor. 2. If X be equal to unity, we get

X' + X" y' + y"x =
-^-,-y

= y

-^-. (31)

Hence we have the following :

RULE. The co-ordinates of the middle point of the join of two

given points are respectively half the sums of the corresponding co-

ordinates of these points.

DBF. I. Two points, C, D, which divide AB internally and

externally in ratios which differ only in sign are said to be harmonic

conjugates to A, B. Their co-ordinates are of the forms

"-TTT- (32)

x' - \x" y'
- Xy"=

-

DBF. II. Two points, C, D, equidistant from the middle point of

AB, are said to le isotomic conjugates with respect to AB. Their
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co-ordinates are of the forms

EXERCISES.

1. Find the co-ordinates of the points which bisect the joins of (8, 12) ;

(4,
-

5) ; (- 12,
-

6).

2. The join of the points (3, 4) (5,
-

6), is divided 1 into 3, 2 into 5,

3 into 7 equal parts ; find, in each case, the co-ordinates of the division

which is next to the point (3, 4).

3. The joins of the middle points of opposite sides, and the join of the

middle points of the diagonals of a quadrilateral, are concurrent. For, if

x\y\, xzyz> #3^3. #4^4 he the co-ordinates of its angular points, then the

co-ordinates of the point of bisection of the join of the middle points of its

diagonals, or of either pair of opposite sides, are

i(yi + .vz + ys + ?A). (36)

THEORY OF THE MEAN CENTRE.

12. DBF. Let there be given n points, A^ A2 . . . An ,
and a

corresponding system of multiples, m^ m2 . . . mn ,
connected tvith

them, then, if a point l
be determined on the join ofA lt A t ,

so

that the ratio of section (A^Az, J9,) may be equal to - mz : m^

Again, if JBy be a point on the join of B^ A 3 ,
so that (B\A^ JH^)

= m3 : mi + m2 , Sfc. ; lastly, let n_^ be on the join of j5n_2 ,
An ,

such that
( n.^A n , n.i}

= mH : m Y + mz . . . wn_i, -B_i is called

the mean centre of A^ Az . . . A n for the tystem of multiples

nil, m-,. . . , mn .

It will be seen that the foregoing construction is the same as that given

in statics for finding the centre of gravity of masses m\, mz, . . . mn ,
at the

points A\, AZ, . . . An ; but as Analytical Geometry is altogether inde-

pendent of that science although it may employ some of its terms we have

thought it best to give a purely geometrical definition of mean centre.
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13. PBOP. If xtfn xzyz ,
. . . xnyn le the co-ordinates of

I,
A z ,

. . . An ,
the co-ordinates of the mean centre are

In fact, from 11 we get the abscissae of the points

. viz.,

11 2 2

w! + w?2
'

,

&c.,m1 + mz + m3

similarly for the ordinates.

Cor. 1. The mean centre is independent of the order in

which we combine the given points.

Cor. 2. In order to find the mean centre of a system of points

for a system of multiples we may divide them in groups ;
find

the mean centre of each group ;
then find the mean centre of their

mean centres for multiples equal to the sum of the multiples

belonging to each group.

Cor. 3. If ml + mz . . . + mn = 0, the mean centre is inde-

terminate or at infinity on a determinate line.

Let Sn_z be the mean centre of AI, A2) . . . -4n-i> then the

point .#_! must satisfy the proportion

If Bn^ does not coincide with An ,
the point B^ is at infinity

on the line n.i An ,
if Bn_z coincide with An) Bn_i may be any

point whatever in the plane.

14. If M be the mean centre of the summits A, B, C of a

triangle for the system of multiples a, /3, y, then a : /8 : y : : the

triangle BMC : CMA : AMB.
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Dem. In order to find the point M we divide AB in C" so

that the ratio of section (AB, C")
= -

/3 : a, that is BC' : C'A

B

: : a : /? ;
but BC' : C'A : : triangle BMC : CMA. Hence

a : ft : : BMC : CMA. Similarly p : y : : CMA : AMB.
Cor. If o + /8 + y = 0, but a, ft, y variable, the locus of the

point M is the line at infinity.

DBF. If MI = mz
= m3 . . . = mn the mean centre is called the

centre of mean distances.

EXERCISES.

1. The medians of a triangle are concurrent, for each passes through the

mean centre of the summits.

2. The orthocentre of a triangle is the mean centre of its summits for

the multiples tan A, tan B, tan C.

3. If x'y', x"y", x"'y'" be the summits of a triangle, a, b, e the lengths

of its sides, the co-ordinates of its incentre are

ax' + bx" + ex'" ay' -f by" + ey'"
; : (ool

a + b + c a 4- b + c

4. If B be the centre of mean distance of A\, A*, . . . A n ,
the sum of the

projections of the lines EA\, BA 2 ,
. . . BAn upon any axis whatever is = 0.

Take B as origin, and the axis of x the line on which the projections arc

made.

5. Find the co-ordinates of the centre of mean position of the points

(a cos a, b sin o), (a cos )8, b sin ), (a cos 7, b sin 7),

{acos(a + + 7), -isin(a + j8 + 7)}.

Ati3. x = a cos ^ (o + &) cos (0 + 7) cos (7 -f a),

y =b sin(a + ) sin08 + 7) sin J (/ + <*). (39)
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6. If $be the mean centre of the points A, B, C, . . . L for the multiples

a, b, c, . . . I, the sum of the products of the projections of the lines SA, SB,
. . . SL upon any line whatever by a, b, . . . I = 0. In fact, from (37) we get

#2 = 0, or 2# (x\
-

x)
= 0. (STEINBR.)

7. With the same hypothesis if The any arbitrary point,

aTAz + bT& . . . ITLi= aSAz + bSB* + . . . 181? + 2 (a) . TS2
. (Ibid.) (40)

If x, y be the co-ordinates of T, and S be taken as origin, we have

2#i =
0, 2yi =

;

but 2 (a) TA* = 2<? { (*
-

*i)
2 + (y

-
yi)

2
}
= 2a (a? + y

2
) + 2a (zi

2 4 j/i
2
)

- 2*; 2axi - 2y 2yi =
(2ff) 5T2 + 2 (a-S^

2
)

.

8. In the same case

2a . SA* = ^- . 2J . ^52
. (/itd.) (41)

2<?

Taking 5 as origin, 2##i = 0, 2#yi = 0, square and add and we Lave

2 2
(xi

z + yi
z
) + 22a* (*i a;2 + yi ys)

= 0,

or 2 2
(xi

z + yi
2
) + 2J {i2 + yi

2 4 a:?
2 + yz

2 -
(^i

-
*2)

2 -
(yi

-
yz)

2
}
= 0,

or 2 2
. -S^2 -f tab (SA

Z + SS* - AS*) = 0.

Hence 2aSA2
( + *+...) =

SECTION III. POLAE CO-OEDINATES.

15. The polar co-ordinates of a point P are

1. Its distance OPfrom a fixed point 0, called the origin.

OP is usually denoted by p, and is called the radius

vector of the point P.

2. The angle 6, which OP makes with a fixed line (called

the initial line), passing through the origin.

From these definitions it is evident that any equation in

Cartesian co-ordinates will be transformed into polar co-ordi-

nates if the initial line coincide with the axis of x, by the

substitution x = p cos 0, y = p sin 6
;
or by the substitution

c
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x = p cos (0
-

a), y = p sin (0
-

a), if it make an angle a with

the axis of x.

X

M

The angle has the same meaning as in Trigonometry. If

with as centre with a unit radius we describe a circle meeting

OP in M, M'; 6 is the arc AM or more generally AM + 2mr.

In some questions the radius vector OP is negative ;
then 6 is

the arc AM'.

EXERCISES.

1. Change the following equations to polar co-ordinates.

1. x* + y
s = lax. 3. a;

3 = y
2
(la

-
,

1-2 (n, 4. IT*

2. a;
2 -y* = 2*. 4. y

3 =
a x

2. Change the following equations to rectangular co-ordinates :

1. p
2 = a2 cos20. 3. p

2 sin 20 = a2 .

2". picos0 = ^. 4. pl = aicosj0.

3. What is the condition that the points pi 0i ; p2 02 ; ps 03 may be coi-

linear ? Am. pi p2 sin (0i 02) + pz ps sin (02 0s) + ps pi sin (03
-

0i)
= 0.

4. Express the area of any rectilineal figure in terms of the polar co-

ordinates of its angular points.

16. In some special questions we use with advantage liradial

co-ordinates or liangular co-ordinates. These are denned as

follows : Being given two fixed points -F, F\ the biradial co-
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ordinates of a point P are the distances PF =
p, PF' =

p'- to

every system of values of these radii vectors correspond two

points symmetriques with respect to F, F'. p, p' are the biradial

co-ordinates of P. The biangular co-ordinates of P are

cot F'FP = A, cot FF'P =
/*.

SECTION III. TBANSFOBMATION OF CO-OKDINATES.

17. The co-ordinates of any point P with respect to one system of

axes being known, to find its co-ordinates with respect to a parallel

system.

Let Ox, Oy be the old axes, O'X, 0'Fthe new, so that 0'

is the new origin ;
then let the co-ordinates of 0', with respect

to Ox, Oy, be #', y' that is, let OL =
#', L 0' = y'. Again, let

x, y be the old co-ordinates of P, that is, let OM= x, MP =
y.

Lastly, let X, Y be the co-ordinates with respect to the new

y
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EXERCISES.

1 . Refer the following equations to parallel axes :

1. a;
2 + y

1 - \1x - 16y - 44 = 0. New origin, 6, 8.

Ana. xz + y*
- 144 = 0.

2. 3z* - 4xy + 2y
2 + Ix - by - 3 = 0. New origin, 1, 1.

2. Find the co-ordinates of a point, so that when the following equations

are referred to parallel axes passing through it they may be deprived of

terms of the first degree :

1. 3^ + 5xy + y
2 - 3x + 2y + 21 = 0. Am. - }f, H.

2". bx* + 2xy + y
2 - lOz + 2y + 10 = 0. Am. f,

-
.

3*. 4#2 + 4a# + y-
- 8x - 6y - 10 = 0. Ans. 00,00.

18. The co-ordinates of a point P with respect to a rectangular

system Ox, Oy of axes being known, to find its co-ordinates with

respect to another rectangular system OX, OY, having the same

origin, but making an angle with the former.

Let OM, MP, the co-ordinates with respect to the old axes,

be denoted by x, y ;
and ON, NP the new co-ordinates, by

X, Y.

Let OP be denoted by p, and the angle PON\>j <. Now
since

cos (0 + <) = cos cos
<f>
- sin sin

</>,

and sin (6 +
</>)

= sin cos < + cos sin
</>,



(43)

(44)
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multiplying each by p, and substituting, we get

x = XcoaO - Fsin 0,

y = Xsin 6 + Ycos

Cor. If the equations (43) be solved, we get

X = xcosO + y sinfl,^

F= y cos - x sin }

Observation. Those who are acquainted with the Diffe-

rential Calculus will see that

dy dx
x=

de>
and

y=-je-

The following more general demonstration is due to BRIOT

et BOUQUET.

Let O^be an axis of projection, then

M

proj. of OH =
proj. of OP + proj. of PM

=
proj. of OP'+ proj. of P'M.

Hence x cosZOX + y cos ZOY
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Supposing OZ to be successively perpendicular to T, OX, and

we get
x sin 6 = x' sin (0

-
a) + y' sin (0

-
a'), (45)

y sin 8 = x' sin a + y' sin a'. (46)

If both systems are rectangular, we have

and the equations are

x = of cos a - y' sin a, y = x' sin a + y' cos a,

which are the same as equations (43).

EXERCISES.

1. If we transform from oblique co-ordinates to rectangular, retaining

the old axis of x
; prove Y= y sin w, X = x + y cos .

2. If x, y ; x', y' be the co-ordinate of a point referred respectively to

rectangular and oblique axes having a common origin; prove that if the

axes of the first system bisect the angles between those of the second,

x = (x' + y') cos \n>,

y = (x'
-

y'} sin \<a.

3. Show that both transformations are included in the formulae

y = \'x + p'y + v,

by giving suitable values to the constants A, jt, &c.

*4. If the old axes be inclined at an angle <a, and the new at an angle ',

and if the quantic axz + 2/ixy + by
z

,
referred to the old axes, be transformed

to a'-X2 + 2A'Zr+ i'F2
, referred to the new ; prove

ab-tf a'b'-h'* . _.
I . o

- -
, , V '/

a + b - 2A cos u a'+b' 2A' cos a/ , . ->

. :
= : o t

" ^ '
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If M be the point xy referred to one system, and XY referred to the

other system,

OM 2 = x2 + y
2 + 2xy cos w = X 2 + Y2 + 2XY cos

'

;

ax2 + 2hxy + by
2 = a'X 2 + 2h'XY + b' Y2

(hyp.).

Hence if A be any multiple

ax2 -f Ihxy + by
2 + A (x

2 + y
2 + 2xy cos w)

= a' X 2 + 2h'XY+ b'Y2 +\ (X
2 + Y 2 + 2XY cos '),

or

(a 4 A) x2 + 2 (h + A cos a] xy + (
b + A) y

2

=
(a' + A) X 2 + 2 (h! + A cos ')

XF + (b' + A) F2
.

Now, if the first side of this identity be a perfect square, the second will be

a perfect square ;
but if the first be a perfect square,

(a + A) (b + A)
-

(h + A cos w)
2 = 0, or

2
a -f b 2h cos a> ab ffi _

sin2 a> sin-to

and if the second be a perfect square,

a' + b' 2h' cos &/ a'b' h'2

A2 + r-=-7 + 7-5-7-
= 0.

sin'w srrrw

Since the same values of A satisfy both equations, the coefficients must be

equal. Hence, &c.
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*SECTION IV. COMPLEX VABIA.BLES.

19. An expression x + iy, in which z, y are ike rectangular

Cartesian co-ordinates of a point P, and i the imaginary radical,

v -\ is called a complex magni-

tude. If P =

o M X

+ y
2 = OP,

p is called the modulus, and the

angle 8, made by OP with the

axis of x, the inclination or

argument.

The modulus p is always positive, the argument is determined

except a multiple of 2ir. We say that the imaginary x + yi is

represented by the point P, and also by the vector OP.

Complex magnitudes were introduced by Cauchy in 1825,

in a memoir,
" Sur les integrates definies prises entre des limites

imaginaires:" the method of representing them geometrically

is due to Gauss. The introduction of these variables is one

of the greatest strides ever made in Mathematics. The whole

of the modern theory of functions depends on them
;
and they

are so connected with modern Mathematics, that some know-

ledge of them is essential to the student. "We shall give only

their most elementary principles.

20. If the complex variables zlf z2 ,
zs . . . zn be represented by

the vectors OAi, OA 2 ,
OA 3 ,

. . . OA n ,
the sum 2(2i) is represented

by the resultant ofthe vectors.

First, to find the sum of z
lt

s2 ,
draw

A^BZ parallel and equal to OA^ we

have proj. 2
=

proj. OAi + Pr j-

A^z-pxo]. OAi+proj. OA Z . Hence

if the co-ordinate axes OX, OY be

taken as axes of projection, we have

abcissa of

-B = yi + y

to OA3,
1

'

2
= xl + xz ,

ordinate of

and continuing thus draw SZBZ equal and parallel

94 equal and parallel to OAt , &c., we find the
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abcissa of Bn = S(#i), ordinate of Bn
= 2(yi). Hence the pro-

position is proved.

21. To construct the vector which represents the difference

between two complex variables. If we put Z! + z2 = z3 ,
we have

z2 = z3
-

Zi. Hence we have the following construction for

finding the vector and the point which represent the difference

of two complex magnitudes. Draw from the origin a line OA Z

equal and parallel to the line A^BZ , joining the representative points,

AI, Bz of Zi, z3 ;
then OA 2 will be the vector, and A 2 the point

required.

22. Being given the vectors OA^, OA Z of the complex magni-

tudes Zi, z, to construct the vectors

1. Their product. Let zt ,
z2 be

the given points, pj, p2 their mo-

duli, and 0j, &2 their arguments;

then we have

Si = PI (cos Oi + i sin 6^,

22 = p2 (cos &2 + i sin 2) ;

therefore Zi z2 = p t p2 {
cos (0\ + 2) + * sin

- 'sin03).

X

Hence, if z3 be the point required, p3 its modulus, and 3 its

argument, we see that the product of two complex magnitudes
is a complex magnitude, whose modulus is equal to the product of
their moduli, and argument equal to the sum of their arguments.

Hence, if we make OA equal to the linear unit, the triangle

A0z l is similar to z2 0z3 ,
and the method of constructing the

point z3 is known.

2. Their quotient. This follows from 1. For we have

z, T
Hence the quotient z3 -f- z2 makes with axis of x an angle equal to

that which z3 makes with z2 ,
and the modulus is a fourth propor-

tional to p2 , p3 ,
and 1 .
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EXERCISES.

1. Transform x + iy to polar co-ordinates. -*4*. pe'fl.

2. Find the point which represents
2 l n i

Z , Z2j Z , Z".

3. If zi, zj, za be three coinitial complex variables, prove that if three

multiples I, m, n can be found satisfying the two equations

lz\ -f mzt + nzz = 0, I + m + n = 0,

the corresponding points are collinear.

4. If be the origin, a, &, y complex magnitudes representing the

angular points of the triangle ABC, prove that if la. + mfi + ny = 0, the

points A', B', C", in which the lines AO, BO, CO meet the sides of the

triangle, are denoted by either of the systems

la. tup ny m& + ny ny + la la + mft

m + n n + l' l + m' m + n
'

n + l' l + n
'

5. If o, ft, 7, 5 represent any four coplanar points A, B, C, D, and if

the multiples I, m, n, p satisfy the two equations la + m& + ny + pS =
0,

l + tn + n+p = 0, prove that the point of intersection of AB and CD is

la. + m& mft + ny . la + ny-
,
of BC. AD is -, and of CA. BD is --.

l + m m + n l + n

6. If z be the complex magnitude which represents the mean centre of

the points zi, z% . . . zn , &c., for the system of multiples a, b, c . . . I, prove

_ _ 2 (az\)~
2()'

7. If z denote any complex magnitude, prove that the points z, z1
, z-, 2s

,

&c., represent the summits of a polygon whose angles are equal, and whose

sides are in OP.

DBF. The polygon of this Ex. is called a logarithmic polygon.

8. Prove that the n values of z represent the summits of a regular

polygon.

9. Between the points z and z, prove, that can be described, n logarithmic

polygons each of n sides.

10. If a figure be given, the vectors of whose summits are z\, z%, zs, &c.,

prove that a translation of the figure is expressed by adding a complex

magnitude, a + fii, to the vector of each summit
;
and a rotation through

an angle <p about the origin by multiplying zi, zj, 3, &c., each by
cos

<f>
+ t sin <p.
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MISCELLANEOUS EXERCISES.

1. Show that the polar co-ordinates (p, 6) ; (- p, ir -t- 0) ; (- p, ir),
all

represent the same point.

2. Prove that the three points

/ 33 33\

(a, b); (
+ 28 V2, * + 28 v/2) ;

L
+^|,

6

-^= J,

form a right-angled triangle.

3. Find the perimeter of the quadrilateral whose vertices, taken in order,

are

(a, a V3~) ; (- b V3, b) ; (- c, -c\/s) ; (d\/3, -d).

4. If the opposite sides, AS, DC of a quadrilateral be divided in the same

ratio in the points E, F ;
and the sides AD, BC in the same ratio in the points

G, H; prove that EF, GH intersect in a point /, so that

IG _EA IE _ GA
IS~EB' IF~ GD'

5. If the points (ab), (a' b'}, (a a', b b') he collinear, prove ab' = a'b.

6. If the co-ordinates (x' y'}, (x" y"), (x'" y'") of three variable points

satisfy the relations

(of
-

x") = \ (x"
-

x'")
- M (y"

-
y'"},

(y'
-

y") = A (y"
-

y'") + n (x"
-

x"'},

where A. and
/j.

are constants, prove that the triangle of which these points

are vertices is given in species.

7. If two systems of co-ordinates have the same origin and the same axis

of x, prove th&t

sin (<a ') sin eo'

x = x +y ^ -', y = y -. .

sin co sin w

8. For what system of multiples is the circumcentre of a triangle the

mean centre of its angular points ?

9. If S he the mean centre of the points A, B, C ... L for the multiples

a, b, c . . . I, prove, if T he any arbitrary point, that

(2a) TS* = (S) 20 . TA* - 2ab . AB*. (49)

LAGKANGE, Meeanique Analitique.

10. 2TAt = -2A& + nTS2
. (50)
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11. Prove that the degree of any equation cannot be altered by tranefor-

malion of co-ordinates.

12. If A, B, C, D be four collinear points, prove that

AB . CD + BO. AD 4- CA . BD = 0.

13. Prove the following formulae of transformation from oblique axes to

polar co-ordinates :

sin
(

-
0) sin

x = p -. , y = p-
sin o sin <a

14. Prove that the diameter of the circle passing through the two point*

p tf
, p" 6", and the origin, is

sin (0'
-

0")

16. Find the area of the triangle whose vertices are the three points

(a, 6), I 2a, 0+-1, I 3, H 1.

16. If B be the centre of mean distances of the points A\, At . . . A,

2 (AiAzA 3)
z = n 2 (BAiAzf. DESIRE ANDRE. (51)

17. If B be the mean centre of A\ t At, A,, for the multiples m\ t mz . . .

mn , 2ffnm2Z3 (AiAzA 3)'
i = 2(i) 2w*i>W2 (BAiAz)

2
. (NEUBERG.) (62)

Multiplying the matrices

1, 1 ... 1,

. mnxn ,

The product will be 42 m\m?.m-&

. Xn,

2/2

(MuiR. DET., 72), and also

, 2 m\x\*, 2 m\xiyi,

if B be the origin of co-ordinates.

But the last determinant is the product of the matrices

, . mnxn , xi t xt, . . . Xn,

y\,. myn ,

which is equal to 42JiWz (BA\AtY-
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18. In the same case if <7i, ft, Ob . . . Cn be'a second system of n points,

2mim2 t3 (AiAzA3) (CiCzC3)
= 2 m\ 2 wnrns (SAiAz) (BC\Gz}.(Ibid.) (53)

If (#i'yi') (x-i'yz) . . . (xn'yn) be the co-ordinates of C\, ft . . . Cn , replace

the second matrix by

1, 1 ... 1,

Xi, Xz . . . X'n

y\, yz - . y'

19. If D be the mean centre of d, C2 . . . Cn for mi, mt . . . mn,

) (DCiCz).(Ibid.) (54)

20. If the sides AS, SO, CD, &c., of a polygon be each divided in the

same ratio, the centre of mean distances of the summits coincide with that

of the points of division.

21. If AI, AZ, AZ, At be four coplanar points, and if A\Az be denoted

by 12, &c., then,

0, 12
Z
>

0,

T9
2

Oil ,

42
;

,

li

23
Z

,

0,

0,

1,

= 0. (55)



CHAPTER II.

THE RIGHT LINE.

Q

SECTION I. CARTESIAN CO-ORDINATES.

23. To represent a right line by an equation, there are three

cases to be considered.

1. When the line intersects both axes, but not at the origin.

First method. Let the line be SQ, and let it cut the axes

in the points A, B
;
then OA, OB

are called the intercepts on the axes,

and are usually denoted by a, b.

Also when the axes are rectangular,

the tangent of the angle which the

line makes with the axis of x on the

positive direction (viz. the angle

PAX] is denoted by m. Now take

any point P in SQ, and draw PM parallel to OY; then OM,
MP are the co-ordinates of P; and if the axes be rectangular,

we have, drawing BT parallel to OX, since TP = MP - OB
= y-t>,

TP
-^^ tan PAX,

M X

y - b
= m:

therefore y = mx + b. (56)
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If we had taken any other point in SQ, and called its

co-ordinates x and y, we should have obtained the same

equation. On this account y = mx + I is called the equation of

the line. If the axes were not rectangular, the equation would

still be of the same form. For in that case TP -f BT= OB -f A
= sin OAB -f sin ABO = sin A -=- sin (<o

- A),

i/ b
or = sinA -f sin (w

- A) = m;

therefore y = mx + b,

and the only thing changed is the quantity represented by m.

Since x, y denote the co-ordinates of any point along the

line, they are called current co-ordinates. They are also called

variables, because they vary as the point which they represent

moves along the line.

The quantities m, b are called constants, because they retain

the same values while the line remains in the same position,

and vary, only when the position of the line varies
;

b is called

the ordinate at the origin and m the coefficient of direction.

Second method. Let AB be the

line
;
and denoting the co-ordinates

of any point P in it by x, y, and the

intercepts (see first method} OA, OB

by a, b, we have, from similar tri-

angles,
O

PB

therefore -+?-!.
a o

a, b are subject to the rules of signs.

(57)
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Third method. Let AS be the line,

dicular OP from the origin; and de-

noting OP by p, and the angles A OP,
POB by a, (3, respectively, we, from

(38), have

Let fall the perpen-

x y
, _ __ 1 .

hence

OA

P

OB

P

or x cos a + y cos (3 =p. (58)

In this equation the positive direction of p is from the origin

towards the line, and a, (3 are the angles which the positive

directions of the axes make with the positive direction of p.

Hence, if the axes be rectangular,

x cos a + y sin a = p. (59)
This form of equation, which in many investigations is more

manageable than any other, has been called the standard form.
See HESSE, Vorlesungen Analytische Geometric.

Fourth method. The general equation Ax + By + C =
0, of the

first degree, represents a right line.

Dem. By transposition, and dividing by B, we get

_A _C

and this (see first method}, being of the form y = mx + b, re-

presents a right line.

24. 2. When the line passes through the origin.

Let OA be the line. Take any
point P in it, and draw PM
parallel to OY- then, if the angle
POM be denoted by a, we have
MP: OM: : sin a : sin (to

-
a),

or y : x : : sin a : sin
(a>

-
a) ;

therefore

sin a

sin (o>
-

a)
x.
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Hence, putting -r
f

r = *, we get y = mx. (60)
sin (a)

-
a)

This equation may be inferred from (56) by putting b = 0.

U;ence ]y ihe equation of a line contain no absolute term, the

line passes through the origin.

25. 3. When the line is parallel to one of the axes.

Let the line AB be parallel to the axis of #, and make an

intercept b on the axis of y. Now

take any point P in AB, and draw

the ordinate MP, which is equal

to b [Euc. I. xxxiv.]. Hence the

ordinate of any point P in the line O MX
AB is equal to b

;
and this state-

ment is expressed algebraically by the equation y =
b, which is

therefore the equation of the line AB.
This result can be obtained differently, and in a way that

will connect it with a fundamental theorem of Modern

Geometry.
X I/

From equation (57) we have- + ^
=

1, where a and b are the
((

intercepts on the axes. Now if the intercept a be infinite,
X

that is, if the line meet the axis of x at infinity, the term - will

V
a

vanish , and we get
'- = 1

,
or y = b

;
but y = b denotes a line parallel

to the axis of x. Hence a line which meets the axis of x at

infinity is parallel to it
;
and we have the general theorem, that

lines which meet at infinity are parallel. In a similar manner

x = a denotes a line parallel to the axis of y at the distance a.

Hence we have the following general proposition : If the

equation of a line contains no x, it is parallel to the axis of x ; and

if it contains no y, it is parallel to the axis of y.

From the discussion in the preceding 23-25 we infer the

following definition :

The equation of a line is such a relation between the co-ordinates

of a variable point that iffulfilled the point must be on the line.
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EXERCISES.

1 . What line is represented by the equation y ?

Am. The axis of x. For if b = in the equation y = b,we get y = 0.

2. Prove that if the equations of two lines differ only in their absolute

terms, the lines are parallel.

3. Find the intercepts which the line Ax + By + C = Q makes on the

axes. G C
Ans. --,--.

4. If the equation of a line be multiplied by any constant it still repre-

sents the same line ; for the intercepts made by KAx + \By + \0 =

on the axes are the same as those made by Ax + By + 0= 0.

5. Prove that the line which divides two sides of a triangle proportion-

ally is parallel to the third side.

6. Find the locus of a point which is equally distant from the origin

and the point (2x', 2y').

If (xy) be equally distant from (0, 0) (2x', 2y), we have

*a + y
s= (*

-
2*')

2 + (y
-

2y')
2

.

Hence xx' + yy' = x'* + y'*. (61)

And since this contains x and y in the first degree, the locus is a right

line.

7. Find the loci of points equally distant from the following pairs of

points :

1.
( cos (p,

b sin <p) ; (a cos <f! ,
b sin <') .

Ans. --^-- -
. ^-- =

(a
2 -62

) cos A (0-0'). (62)'

2. {acos(a + )8), isin(a + )}; {acos(a-), isin (o-

Ans. ~- - ^-= (02-i
2
)cos0. (63)

cos a sin a

r.
(*. J), (tr.J).
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26. If the equations Ax + By +(7 = 0; x cos a. + y sin a. -p = 0,

represent the same line, it is required to find the relations between

their coefficients.

1. When the axes are rectangular.

Dividing the first equation by R, and equating with the

second, we get
A B .

= cos a,
= sin a.

Square, and add, and we get
!

= 1
;
therefore R = V-4

2 + B*.

A B
Hence

2. When the axes are oblique. It

is required to compare the equations

Ax + By + (7 = 0,

and xcos a + y cos/8 p = 0.

Let OQ, OR be the intercepts ;

then we have

C ,_^ =
Z5 ^ +^

QR : OR : : sin to : sin Q or cos a.

A sin co

cos a =

In like manner, cos 6 =

Cor. L
B- A cos to

B sinw

coso>

sma =

- ^ COS W
. 2. tan a = -^-

,
tan B =A sin w

D2

- COS 0)

-:
-

.

B sin o>
(69)
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27. To find the angle between the lines Ax + By + (7=0(1);

andA'x + S'y + C"=0(2).
1. Let the axes he rectangular. Then, if

<f>
be the angle

between (1) and (2), it is equal to the difference of their

inclinations to the axis of x
;
but the tangents of these in-

clinations are (see 23, fourth method},

A . A'

A'B-AB'
(70)

Cor. 1. If the lines (1) and (2) be parallel, they make equal

angles with the axis of x
;
therefore

Hence the condition of parallelism is

AB'-A'=0. (71)

Cor. 2. If
<f>
= -, tan < is infinite

;
and from (70) we infer

2i

the condition of the lines, being at right angles to each other, is

AA' + E' = 0: (72)

That is, if two lines whose equations are given he perpendicular

to each other, the sum of the products of the coefficients of like

variables is zero.

Cor. 3. If the lines y = mx + b, y = m'x + V be perpen-

dicular to each other,
mm' +1=0. (73)

Cor. 4. The angle between the lines y = mx + b, y = m'x + V
is given by the formula

tax*- ""', (74)
1 + mm'

Cor. 5. If the equations of the given lines be in the

standard form,

x cos a + y sin a -p =
0, x cos ft + y sin y8 -p' = 0,

we have < = a-/3. (75)
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2. Let the axes be oblique.

If 0, 6' denote the angles which the given lines make with

the axis of x
;
then ( 26, 2) we have = a + 90

;
therefore

tan0 = -cot a= -. (See equation (69).)A cos to Jo

A' sin w
Similarly,

Hence

tan< = tan(0-0') =

A' cos u-B1
'

(A'B - AB'} sin o>

(76)

(78)

Cor. If the lines be perpendicular to each other

AA' + BB' - (AB' + A'B} cos o> = 0. (77)

EXERCISES.

1. Find the angle between the lines

x cos /3 y sin a; cos 7 w sin 7
; 1 = U. T J

A W.
4 a 6

aS sin (0
-
7)

. Va2 sin2 ~+ i2 cos2 Va2 sin2? + b- cos2?'

2. Find the angle between the lines x y = and

*
+ *- ,.*.

tan q> + tan <p
cot

<(> + cot
</>

(
1 + tan <' tan ^>" )

^ws. tan-M- 1,
2L>|. (79)

DBF. 7%e result of substituting the co-ordinates of any point

in the equation of any line or curve is called the POWEE of that

point with respect to the line or curve.

[This definition, first given by STEINEK,
is now employed by all the French and

German writers.]

28. Tofind the length of the perpen-

dicularfrom the point x'y' on the line

Ax + By + C = 0.

1. Let the axes be rectangular.

Let the line intersect the axes in

the points Q, R, then the perpendicular from P is equal to
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twice the area of the triangle PQR divided by the base QR ;

but the areu of

PQR = -= (Ax' + By
1 4 C), (Equation (24).)

and QR = JL ^A* 4 &. (Equation (11).)

Therefore the length of the perpendicular is

Ax' + By' + C

The area PQR changes sign when R goes from one side to

the other of the line QR. Thus the formula (80) must have

the sign + for all points on one side of the line, the sign
- for

those on the other side. We find the proper sign by observing

that the distance from to the line, viz. C\ >/A
l + * must be +.

Hence we have the following rule for finding the length of

the perpendicular from a given point on a given line :

Divide the power of the given point with respect to the given line

by the square root of the sum of the squares of the coefficients of the

variables, and the quotient taken with the proper sign will be the

length required.

2. Let the axes be oblique.

Since the axes are oblique, the area of the triangle PQR is

C(Ax' + By' + 0} sino)

2AB
and the length of QR is

C v/^ 2 + B* - 2AB cos o> ,_ ,. , 1oN v-
. (Equation (12).)AB

Therefore the perpendicular is

(Ax + By
1 + C) sin to

cosw
(81)
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29. If the equation of the line AB he given in the form

M

x cos a + y cos (3
-

p, we find the length of the perpendicular

from the point M, as follows :

Let OP =
x', PM =

y', and MR the perpendicular from M
upon AB =

p'. Then the projection of OR on OQ is equal to

the projection of the contour OPMR on OQ. Hence,

p = x' cos a + y' cos (3 +p', .'. -p' = x' cos a + y' cos /? -p,

.-. p' = - the power of the point M. (82)

We suppose thaty is subject to the same rule of signs asp-

p is always +, and the points for which p is positive are on the

same side of the line as the origin of co-ordinates.

Cor. The power of any point on a line with respect to the

line is zero
; and, conversely, if the power of a point with respect

to a line he zero, the point must he on the line.

30. If S = Ax + y+C= 0, 8' = A'x + B'y + C' =
0, be

the equations of any two lines, and I, m any two multiples (includ-

ing unity], either positive or negative, then

IS + mS'=0 (83)

is the equation of some line passing through the intersection of the

lines S and S'.

For, since S and S' are of the first degree with respect to

x and y, IS + mS' = will also he of the first degree, and there-

fore will he the equation of some line. Again, if P he the point

of intersection of S and S', the powers of P
( 29, Cor.) with
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respect to S, S' are respectively zero. Hence the power of P
with respect to 18 + mS' = is zero, and therefore the line

IS + mS' = must pass through P.

Cor. 1 . The line y -
y'

- m (x
-

x'}
= passes through the

point x' y' ;
for the power of x' y' with respect to it is zero.

Or thus : y -
y'

= denotes
( 25) a line parallel to the axis

of x at the distance y' ;
and x - x1 = a line parallel to the axis

of y at the distance x1
. Hence,

y -
y'

- m (x
-

x'}
= (84)

denotes a line passing through their intersection, that is, through

the point x' y'.

Cor. 2. In the same manner it may be shown that if

S =
0, S' = 0, be the equations of any two loci (such as a line and

a circle, or two circles, &c.), IS + mS' = will denote some curve

passing through all the points of intersection of S and 8'.

31. To find the equation of a line passing through two points

Y, "y".

Take any variable point xy on the line, then the three points

zy, x'y, x" y" are collinear. Hence (equation (18)),

i, = 0, (85)

which is the required equation.

It may be otherwise seen that this is the equation of a line

passing through the two given points. 1. It contains x and y
in the first degree ;

hence it is the equation of a right line.

2. If we substitute x' y' for xy the determinant will have two

rows alike, and therefore will vanish
;
hence the co-ordinates

x' y' satisfy it, and the line passes through x' y'. Similarly it

passes through x" y". The determinant (85) expanded gives

(y'
-
y"} x-(x' -

x"} y + x' y" -x"y' = 0; (86)
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from which we infer the following practical rule for writing
down the equation of a line passing through two given points

*Y, x"y":

Place the co-ordinates of one of the given points

under those of the other, as in the margin ; then the x1

, y',

difference of the ordinates of the given points will x", y",

give the coefficient of x: the corresponding difference

of the alscissee with sign changed will be the coefficient of y. Lastly,

the determinant, with two rows formed ly the given co-ordinates,

will be the absolute term.

Cor. 1. If the equation of the line joining x' y', x" y" be

written in the form Ax + By + C = 0, we have

y'
-
y" = A, (x

1 -
x"} = -B, x' y"

- x" y'
= C.

Cor. 2. Hence may he inferred the condition that the points

x"y", x'"y'" may subtend a right angle at x' y'.

For, let the joins of the points

x'y', x"y" }>eAx + y+C=0,
and the join of the points

x'y', *"Y" be A'x + B'y + C' =
;

and, since these are the right angles to each other,

AA' + BE' =
;

and, substituting, we get

(x'
-
x"} (x

1 -
x'"} + (y

1 -
y"} (y'

-
y'") = 0. (Comp. (14).)

EXERCISES.

1. Find the equation of the join of (2,
-

4), (3,
-

5).

Am. x + y + 2 = 0.

2. Find the medians of the triangle whose vertices are x'y', x"y", x'"y'"*

Am. (y" + y" -
ly'} x -

(x" + x'" - 2x') y + (x" + x"'} y
-

(y" + y'") x' = 0, &c. (87)
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3. Find the equations of the joins of the pairs of points

1. (r cos
</>',

r sin 4>') ; (r cos <f>",
r sin <f>").

Am. cos \ ($' + <f>")
x + sin J (<f> -1- $") y = r cos (<^'

-
$'). (88)

2. (a cos <', J sin
<}>') ; (a cos <)>", b sin #").

A*
)!

Am. cos i (<' + $>")
- + sin \ (</>' 4- <f>") f-

= cos
(<J>'

-
$>"). (89)

a

3. {a cos(a + ;8), b sin (a + )} ; (a cos (a
-

),
fi sin (a

-
j8)}.

Ans. cos a - + sin a r = cos &. (90)
<i o

4. (a*
2
, 2a<) ; (a<'

2
, 2at'). Ans. 1x - (t + t') y + 2att' = 0. (91)

5. (a sec
<f>,

4 tan
<f>) ; (a sec

<j>',
b tan ^>').

^i*. cos i (<^
-

^')
- - sin i (^> + (^') ^ = cos J (^) + ^.'). (92)
a o

6. (A; tan $, k cot f ) ; (k tan
<^',

A- cot </>').

(93).

tan 4> + tan $> cot <f + cot
<f>

4. Find the equations of the joins of the middle points of the opposite

sides, and also of the joins of the middle points of the diagonals of the

quadrilateral whose vertices are x'y', x"y"t x'"y"', x""y"" and show that

the three lines thus found are concurrent.

32. To find the co-ordinates of the point of intersection of two

lines whose equations are given.

Since the co-ordinates of the point of intersection must satisfy

the equation of each line, this problem is identical with the

algebraic one of solving two simultaneous equations of the first

degree. Thus the co-ordinates of the point of intersection of

the lines

x y x y mn inn .

- + - =
1,

- + - =
1, are -

,m n n m m + n m+ n
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EXERCISES.

1. Find the co-ordinates of the points of intersection of the following

pairs of lines :

1. x cos
<t> -f y sin

<f>
=

r, x cos
<t> + y sin

<f>'
= r.

.
,

xcos (0
-

<f>')'

w
cos (p

-
<J>')

2. - cos <t> + - sind> = 1,
- cos <*' + - sin*' = 1.

a b a b

(94)

(95)
OOB $-$ COS(<J>

- $)

3. x -
ty + at* = 0, * - *'y + a^2 = 0.

Am. x = att', y = a(t + tf). (96)

2. If + =
1, +

;
= I be one pair of opposite sides of a

2td 2tO Lil 2iQ

quadrilateral, and the co-ordinate axes the other pair, find the co-ordinates

of the middle points of its three diagonals, and prove that they are

collinear.

3. Find the co-ordinates of a point equally distant from the three points

(a cos <p, b sin
<j>) ; (a cos $', b sin <') ; (a cos <p", b sin <j>").

The locus of a point equally distant from

(a cos
<t>,

b sin #) ; and (a cos </>',
b sin

</>'),

is the line ^--- --
. , ,

y - = (a
2 - 52

) cos t (rf>
-

<*')'

Similarly,
- ^-- - f-^-

=
(a

2 -
&*) cos

cos | (^>' + <j>") sin ^ ((/>' -f <f>")

is the locus of a point equally distant from

(a cos
</>',

5 sin
(/>') ;

and (a cos<f>", b sin <f>").

Hence, solving from these equations, we get

a2-*2

')
cos J ($' + <t>") cos J (^>" + ^>),

|)')
sin ^ ($>' + ^>") sin ^ ($" + 0)
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*4. Find the co-ordinates of a point equally distant from

1. (at\ 2at); (at'
2
, 2at') ; (at"

2
, 2at").

Am. x = -
2

f"' + ttf + ft" + ft + 4),

*2. (a sec ft,
b tan ft) ; (a sec ft',

b tan ft') ; (a sec ft", & tan ft").

a2 + b~ cos ^ (ft ft') cos ^ (ft' ft") cos ^ (ft"
-

ft)

a cos ft cos ft' cos ft"

_ a2 4- #> sin (ft 4 ft')
sin | (ft' 4- ft") sin (ft" 4 ft)

5 cos
<t>

cos ft' cos ft"

*3. (k tan ft,
& cot ft) ; (k tan ft',

k cot ft') ; (A tan ft").

Ant. x = -
(cot ft cot ft' cot ft" 4 tan ft 4- tan ft' 4- tan ft"),

k
y = -

(tan ft tan ft' tan ft" 4- cot ft + cot ft' 4- cot ft")

*4. (a cos a, b sin a) : {a cos (a + 3), b sin (a 4 j8) } ;

{
a cos (a

-
),

4 sin (a j8) }
.

a2 - 2

,4*. a; = cos (a
-

&) cos a cos (a 4- J )8),
a

y = -- sin (a
-

j8) sin a sin (a 4- |3)

(98)

(99)

(100)

(101)

33. To find the equation of the line through x'y' t making an angle

<f>
with Ax + By + (7=0.

Let A'x + B'y + C' = be the required line
;
and since this

passes through x'y', we have A'x' + .5y + C" = 0. Hence

A'(x -x'} + B'(y -
y'}

= is the form of the required equation.

A'B - AB'
Again, we have tan

<f>
= --

A.A 4-

Hence ^' (
J? - A tan <) = B' (A + B tan <).

And the required equation is

y-y

(Equation (70).)

-fB - A tan
<j>

A + B tan <

= 0, (102)
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which may be written in either of the following forms :

0. (103)B cos
(f>
- A sin

<j>
A cos < + B sin

</>

A sin<f>-B cos
<f>,

A cos < + B sin 0,

1

= 0. (.104)

If the angle < be right, the equation becomes

Hence the equation of the line through x'y', perpendicular to

Ax + By + C, is

B(x-x')=A(y-y'}. (105)

This may be otherwise proved as follows :

The line Bx - Ay + C' fulfils the condition (72) of being

perpendicular to Ax -f By + C
;
and if it pass through x'y', we

get Bx'
- Ay' + C' = 0. Hence subtracting, we get the equation

just written.

34. The line through x'y', making an angle < with y = mx + b,

is

x-x'
= y-y'

1 -t- m tan < m - tan <*

Cor. The line through x'y' perpendicular to y = mx + I is

y-y' = -(x-x'}. (107)

EXERCISES.

1. Find the line through (0, 1), making an angle of 30, with x + y = 2.

2. Prove tliat the lines x + y V3 - 6 = 0, 3z - y V3 - 4 = are at

right angles to each other.
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3. Find the equations of the perpendiculars of the triangle whose angular

points are x'y' t x"y", x'"y"'.

4. Find the equation of the perpendicular to the line

x cos a y sin a
1

= 1 at the point (a cos o, sin a).
a, b

5. Find the perpendicular to

x y tan $ + a t&n-<f>
= 0, at the point (a t&n

2
<f>,

la tan
^>).

35. To find the equation of a line dividing^ either of the angles

between the lines Ax + By +0 =
0, A'x + B'y + C' =

0, into

two parts whose sines have a given ratio a : b.

Let ZZ', MM' be the given linos
; ON the required line.

From any point XY on ON
let fall perpendiculars on

the given lines : these per-

pendiculars will be to one

another in the ratio of the

sines of the angles, and will

both be of the same sign

( 28), if the origin of co-

ordinates lies in either of the angular spaces LOM, L'OM'
;

and of different signs, if in either of the two remaining spaces.

Hence

Ax + By+C A'x + B'y + C' _ a

o/a
: +~

V

N

the choice of sign depending on the position of the origin.

Hence the equations of the lines dividing the angles between

Ax + By +0=0, A'x + B'y + C' = into parts, whose sines

are in the ratio a : b, are

b (Ax + By+C) _ a (A'x + B'y + C')
(108)

the sign + being the proper one for one of them, and - for the

other.
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In this proof it is assumed that the powers of the origin with

respect to hoth lines have like signs. If they have unlike signs,

the conclusions will he reversed.

Cor. I . If we put

7 ,=
I, and = m,

the equations (108) are transformed into

+ By+C}m (A'x + B'y + C") = 0. (109)

Now if a and I are given, I and m will be given. Hence we
have the following important theorem : If the equations of

two given lines be multiplied respectively by given constants, and

the products either added or subtracted, the result will be the

equation of a line dividing one of their angles into parts whose:

sines have a given ratio.

Cor. 2. If in the equation

l(Ax + By + C) + m (A'x + By' + C")
= 0,

we put

mjl = \, we get Ax + By + C + A (A'x + B'y + C'}= ;

and giving all possible values to X, we get all possible lines

through the intersection of

Ax + By + C=0, and A'x + B'y + C' =
;

Compare 30, Cor. 1 .

Cor. 3. If the equations of the given lines be in the stan-

dard form, the ratio of the sines will be the same as the ratio

of the multiples.

Cor. 4. Since the line passing through a fixed point x'y'

and the intersection of the lines

Ax + By + C = 0, A'x + B'y + C' =

divides the angle between the lines into parts whose sines
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are in the ratio of the perpendiculars on them from x'y', we

have

Ax'+y'+C
b ^A'x'+B'y'+C'

v/A* + z
'

</A-nB*

Hence, substituting these values in (108), we get

(Ax + y + C}(A'x' + B'y' + C")

-
(A'x + B'y + C'}(Ax' + 3y'+C) = 0. (110)

36. To find the condition that three given lines be concurrent,

let the lines be

Ax + y+C=0, A'x + 'y+C' = Q, A"x + B"y + C" =
0,

we see ( 35, Cor. 2) that the third must be of the form

I (Ax + By + C) + m (A'x + B'y + C").

And, comparing coefficients, we get

IA + mA' - A" = 0,

IS + mB' - B" =
0,

W + mC' - C"' = 0.

Hence, eliminating /, m, the condition of concurrence is

A, A', A"

B, B', B" = 0. (Ill)

C, C", C"

Cor. If the coefficients in the equations of three lines be such

that when the equations are multiplied by any suitable constants

they vanish identically, the lines are concurrent.

For if

\(Az + y+C) + n (A'x + B'y + C'} + v (A"x + B"y + C") s 0,

we have, comparing coefficients,

\C + p.C' + vC" = Q;

and eliminating X, /*, v, we get the condition (111) of concur-
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EXERCISES.

1. Find the lines which divide the angles between

Zx + 4y + 12 = 0, 8x + 15y +16 = 0,

into parts whose sines are in the ratio 2:3.

Am. 51 (3* + 4y + 12) + 10 (8x + 15y + 16) = 0.

2. "Write the equations of the bisectors of the angles between

x cos a + y sin a p =
0, x cos j8 + y sin # j' = 0,

in the standard form.

3. Form the equations of the perpendiculars of the triangle whose sides

=
0, (2) A3x+B3y + C3 = 0, (3) ;

the perpendicular on (1) must be of the form (2) k (3) ; and the condition

of perpendicularity gives

k = (AiA-i + BiB2) -f (A 3Ai + B3B\).

Hence the perpendicular is

(A3Ai + B3Bi)(A2x + B2y + C2)
- (AiA2 + BLB2) (A3x + B3y+ C3)

= 0. (112)

4. Show that the orthocentre of the triangle formed by the lines

x - ty + at* = ; x - t'y + at"* =
;

x - t"y + at"z =

is the point -a, a (t + t' + t" + tt't"). (113)

5. Find the equation of the line which passes through the intersection of

A\x + B\y 4 <7i = 0, A 2x + B2y + C2 = 0,

and is parallel to A& + B3y + C3 = 0.

6. If the distances of a certain point from the lines

x cos a + y sin a -p = 0, x cos <*' + y sin af-p'=0, x cos a"+ y sin a"-p"=
be d, d', d", respectively, and if

\=p + d, \'=p' + d', \"=p"+d";

prove A sin (a' -a") + A' sin (a"- a) + A." sin (a- a')
= 0. (114)

7. Being given two triangles M\MZMZ , N\NZN3 ,
to find the condition that

the parallels through M\, M2 ,
M3 to N2N3 ,

N3Ni, NiN2 may be concurrent.

Let the co-ordinates of MI, M2 ,
M3 be a\b\, a2b2 ,

a3b3 ; and the co-ordi-

nates of N\, N2 ,
N3 be c\d\, c2d2,

c3d3 , respectively, then the equations of the

parallels

(y
-

bi)(c2
- c3 ) -(x- cti)(d2

- d3)
= 0, &c.
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If these equations be added, the coefficients of * and y vanish identically.

Hence, in order that the lines may be concurrent, the sum of the absolute

terms must vanish in

Or
(l. d\. 1

*,

= 0. (115)

(NBTIBERO).

Cor. 1. If parallels through the summits of the first triangle to the sides

of the second be concurrent, parallels through the summits of the second to

the sides of the first are concurrent. (Ibid.)

Cor. 2. If two triangles are such that lines through the summits of the

first making the same angle a with the sides of the second are concurrent,

the lines through the summits of the second making an angle a with the

sides of the first are concurrent. (Ibid.)

8. To find the condition that the perpendiculars through the summits of

M\MzM3 on the sides of N\NzN3 may be concurrent.

The equations of the perpendiculars are

(x a\)(cz c3) + (y
-

bi)(dz da)
= 0, &c.

And we find, as in Ex. 7, the condition of concurrence

2#i(tf2 3)
4 %bi(dz d3)

= 0.

0i, <*i 1 bi, di, 1

oz, c2 ,
I + bz, dz, 1 =0. (116)

<^3, C3> 1 "3, d3> 1

(Ibid.)

Cor. 1 . If the perpendiculars from the summits of M\MzM3 on the sides

of N\NzNs are concurrent, the perpendiculars from the summits of N\NzN3
on the sides of M\MzM3 are concurrent. (STEINER.)

Two such triangles are said to be orthologique.

Cor. 2. If M\MzM-j, N\NzN3 be orthologique, and if LI, LZ, D3 divide

the lines M\N\, MzNz, M3N3 in the same ratio, LiDzDs is orthologique to

each of the triangles MiMzM3 , NiNzN3 . For, if we substitute in (116) for

ma\ -f nci . , mb\ + nd\

Or

m 4 n
, forai

Cor. 3. If EiEzE* divide

triangles J)iLzI)3 , EiEzE3 are orthologique.

-, &c., the resulting determinant will vanish.

(NEUBERO.)

, MzNz, M3N3 in the same ratio, the

(Ibid.)
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37. To find when an equation of the second degree is the product

of the equations of two lines.

1. Let the equation contain only one of the variables, such

as

x* - (a + b) x + ab.

Since this is evidently the product of the equations

x -a = 0, x - b = 0,

we see that an equation of the second degree, containing only one of

the variables, represents two lines parallel to the axis of the other

variable.

2. If the equation be homogeneous in both variables, it represents

two lines passing through the origin.

For example,

a? - 5xy + 6y
z = is the product of (x

-
2y} = 0, (x

-
3y} = 0.

3. If the general equation

ax* + 2hxy + ly* + 2gx + 2fy + c =

denotes two lines, throwing it into the form

we see that the second member must be a perfect square.

Hence (h*
-
ab}(g*

-
ac]

-
(gh

-
af}

2 = 0,

or abc+2fgh-af*-bg
z -chz = 0. (117)

This important function of the coefficients of the general

equation of the second degree is called its discriminant. It may
be written in determinant form as follows :

a, h, g

h, b, f = 0. (118)

9-> fi c

Or thus, let

ax* + 2hxy + by
z + 2gx + 2fy + c = (Ix + my + n} (I'x + m'y + n'} .

E2



52 The Right Line.

Hence, comparing coefficients, we get

a =
II', b = mm', c = nn',

2f= mn' -f m'n, 2g = nl' + n'l, 2h = lm' + I'm.

Now the product of the matrices



Cartesian Co-ordinates. 53

Cor. 1. If the general equation represent two perpendicular

lines,

a + b = for rectangular axe.s.

a + I - 2h cos to = for oblique axes.

Cor. 2. If the general equation represent two lines making

an angle <, we have for oblique axes,

2 \/h2- ab . sin w
tand> = ^-= -. .

0+0 - 2A cosco

Hence, if h2 - ab = 0, the lines are parallel.

EXERCISES.

1. "What lines are represented by xz
y* = ?

2. "What lines are represented by xz 2xy sec + y
z = ?

3. Prove that the two lines ax* + 2hxy + by
z = are respectively at right

angles to the lines bx2 - 2hxy + ay
z = 0.

4. Find the angle between the lines ax* + Ihxy + by
2 = 0. If the

equation represent the two lines y mx = 0, y m'x = 0, we get

- h + VA2 - ab - h - VA2 - ab .

m =
: ,

m =
I

-
and since tan <* = --

;, we have tan d> =-1 (122)
1 -f mm a + b

5. The angle between the lines.

(x
z + /

2
)(cos

2 sin2a + sin20) (x tan a y sin 0)
2 is a.

6. Find the bisectors of the angles made by the lines axz -f Ihxy + by
z = 0.

The bisectors of the angles between the lines y - mx = 0, y mx1 =
0,

are

y mx y m'x y mx y m'x

Vl + mz
'

Hence, multiplying and restoring values, we get

h
(
x* - y

2
)
-

(a
-

b) xy = 0. (123)

7. The lines x2 + 2xy sec 2a + y
z = are equally inclined to x + y = 0.
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8. The difference of the tangents which the lines

x* (tan
2 + cos2

0)
- 2xy tan B + y" sin2 =

make with the axis of x is 2 .

9. If A denote the discriminant (118), prove the following relations

a A = BO F*, b A = CA -
G*, c A = AS - H*. (124)

10. When A =
0, prove A:B:G:: : : . (125)

11. If ax* + 2hxy + by* -t- 2gx + 2fy + c = represent two lines, prove

that the lines ax* + 2hxy -f by* = are parallel to them.

12. Find the discriminant of

(ax* + 2hxy + by* + 2gx + 2fy + c) + \ (x
2 + y* + 2xy cos ).

13. Prove that if in the result (123) we change x, y into

A* J?

we get the equations of the bisectors of the angles made by

(ax* + 2hxy + by* + 2gx + 2fy + c)
= 0,

when it denotes lines.

*14. If the sum of the angles <p, $', #", <j>"' be 2ir, prove that the

points

(aces <p,
b sin 0) ; (a cos

<j>',
b sin $') ; (a cos <>", b sin

<f>") ; (a cos <'", b sin </>'")

are concyclic.

By hypothesis (<f>
4

<f>')
= IT % (<[>" + $'")> and J (<f> + $") =

IT - ($'+ <)>'") making these substitutions in (97) we infer that the point

which is equidistant from the 1st, 2nd, 3rd of the given points is equidistant

from the 2nd, 3rd, 4th. Hence the four points are concyclic.

*15. Ift + t' + t" + t'" = 0, prove that the points .

(at*, 200 ; (at'*, 2af) ; (at*", 2at") ; (at"'*, 2at")

are concyclic. This follows from equations (98).

*16. If x, y denote the mean centre of the points in Ex. 14, prove that

the co-ordinates of the circumcentre are

*=t, b

l^y. (126)

Compare the co-ordinates of the mean centre (39) and ofthe circumcentre

(97).
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*17. The points

(k tan <p,
k cot <p) ; (k tan <p',

k cot
<j>') ; (k tan #", & cot <f>") ;

(k cot
</>

. cot <p'
. cot <", k tan < . tan $' . tan #"),

are concyclic. Make use of equations (100).

THEORY OF ANHAEMONIC EATIO.

39. DEP. The anharmonic ratio of four collinear points

A, B, C, D is the quotient of the ratios of section of the two

last with respect to the two first, and is denoted by (ABCD).

CA DA CA.DB
Thus C^^), : -^. (127)

Cor. 1. The anharmonic ratio is inverted by inverting either

pair of points. For

, A1> ~~ CA I)A DA CA
(ABCD} = C :;

Hence (ABCD} = l/(ABDC). (128)

Similarly (ABCD} = 1/(BACJ)}. (129)

Cor. 2. The anharmonic ratio remains unaltered if any two

of the four points be inverted, and at the same time the two

remaining points. Thus

(ABCD) = (BADC) =
( CDAB) = (DOBA). (130)

40. To express (ABCD} in terms of the co-ordinates of

A, B, C, D.

Let OX, T be the axes, and let parallels to Y, OX through

A, B, C, D meet the axes in A', B', C', D ; A", B", C", D"
;

and putting OA' =
a', OB' =

b', &c. Then, evidently,

(S D
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Hence ^.fcffi^
(131)

Similarly

41. To express (ABCD} in terms of the ratios of section made

by the points A, B, C, D on a given segment PQ.

P A B c D Q

Let AP/AQ = a , . . From APfAQ = a we have^P = aAQ ;

therefore

QP - QA = aAQ. Hence QA = QP/(l -
a}.

Similarly QB = QP/(1
-

4), &c.
;

QA-^C QA-QD
but

and substituting for Q^i, Q5, &c., we get

DBF. If (ABCD) = -
1, u4, B, C, D are called a har-

monic system of points, and C, D are said to be harmonic con-

jugates to A, B. In this case we have

CA DA
CB

~
DB'

which agrees with 11, Def. i.

42. If A, B, C, D be a harmonic system of points, andM the

middle of AB

1. MB2 = MC . MD. 2. 21AB =
(I/A C + I/AD).

MC AC2 BC*
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Let a, b, c, d be the abscissae of A, B, C, D with respect to-

an origin upon AB. Then

a, c a d
T- = - T % or 2 (db + cd] =

(a + b}(c + d} (1).
C Or

1. If be the middle point of AB we have a = -
b, and (1)

becomes a2 = cd.

2. If coincide with A or a = 0, (1) becomes 2cd = b (c + d)>

and dividing by led, we get

2 _ 1 1.

b c d

3. If is at M, we have

AC c - a c + \/cd */c

AD d - a d + \/cd

c MC
Hence

ADZ d MJ)

Cor. L If W be the middle point of CD, the relation (1)

becomes

OA.OB+ OC.OD = 20M.Oir, (134)

or the sum of the powers of with respect to two harmonic

segments is double the power of with respect to their middle

points.

Cor. 2. If the abscissae of the points A, B be given by the

equation cur
2 + 2(3% + y = 0, and those of C, D by aV + 2/3'#

+ y'
= 0, we have ab = yfa, a + b = -

2(3/a, &c., and substituting

in (1), we get

ay' + a'y = 2/3(3'. (135)

It is the same, if the points A, B, C, D are denned by their

ratios of section
( 41).

43. DBF. The anharmonic ratio of four rays a, b, c, d of a

pencil is the quotient of the ratios of section of c and d relative to

a and I, and is denoted by (abed).
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If p, p' q, q' be the perpendiculars from two points C, D of

c and d upon a and b, we have

sin ac sn sn ac . snp q= -
,:
- = ^ r - o j

p q sin oc sin bd sin arf . sin be
(136)

The sign of (05^) is independent of any particular convention

of signs. For if the rays c, d both pass between a and b, the
/ft Q

ratios and -, have the same sign, and (abed} is positive.

It will be the same if c and d divide the supplementary angle

(a'b) but if one divide the angle (ab] and the other ('),

(abed) is negative.

44. If the pencil of four rays a, b, c, d be cut by any trans-

versal in the points A, B, (7, D, then both in magnitude and sign

(abed) = (ABCD}.

Dem. Both in magnitude and sign

f - lL

q
~
~AJf q'

Hence

(137)
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45. If S = 0, .$' = be any two lines, the anharmonic ratio of

the four lines 8 + aS' = 0, 8 + bS' = 0, 8 + cS' = 0, S + dS' =

is equal to

a c a d

b - c
'

b - d

Dem. Let 8 = Ax + By + C = 0, S' = A'x + B'y + C" =
;

and cutting the pencil by the axis of #, the abscissae of the

points of intersection of the four rays are

_
C + aC' C+bC'
A+aA" A + bA 1 '

and substituting, we get

Xi x3 Xi XA a - c a d

b c b d (138)

Cor. The anharmonic ratio of the four lines S, S', S + a8',

S + bS' is equal to a : b.

DBF. A pencil of four rays (a, b, c, d} is said to be har-

monic when (abed) = - 1.

Examples

1. An angle and its internal and external bisectors.

2. The sides AB, B C of a triangle, the median AM, and

a parallel through AtoBC.

EXERCISES.

1. With a given range of four points A, B, C, D there can be formed

six different anharmonic ratios.

For with four letters can he formed 24 different permutations, and these

considered as anharmonic ratios are equal 4 hy 4.
( 39, Cor. 2).

The six distinct anharmonics are (ABCD), (ABDC), (ACBD), (ACDB),

(ADBC), (ADCB] ; and the 2nd, 4th, 6th are reciprocals of 1st, 3rd, 5th

( 39, Cor. 1).
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2. Prove that (ABCD) + (ACBD) = 1,

(ABDC) + (ADBC) =
1,

(ACDB) + (ADCB) = 1. (13'J)

3. If ABCD = \, prove that the values of the other five anharmonics are

I/A, (1-A), 1/(1-A), A/(A-1), (A-1)/A. (140)

4. If through the point (see fig., 43) we draw a line EOF parallel to

Sd, and cutting Sa, Sb in the points E, F, show that the six anharmonic

ratios of the pencil (S . abed} can be expressed in terms of the three seg-

ments EC, OF, FE.

5. If (ABCD} = -
1, prove that (ACBD) = 2, and ACDB =

$,

6. If circles described on AS, CD as diameters intersect in an angle 0,

the values of the six anharmonic ratios are*

-tan*-,
sec^,

sin**; -cot2

^, cos^,
cosec2| (141)

7. If two different transversals cut the same pencil, their anharmonic

ratios are equal.

8. If two equal anharmonic pencils have a common ray, the intersections

of the remaining three homologous pairs are collinear.

9. If three sides of a variable triangle pass through three collinear points,

and two of its vertices move on fixed lines, the locus of the third vertex is

a right line.

10. If A, B, C; A', ', C' be two triads of points on two lines inter-

secting in 0, and if (OABC] = (OA'B'C'), the lines AA\ BB', GO' are

concurrent.

SECTION II. SYSTEMS OF THEEE CO-ORDINATES.

46. DBF. i. A fundamental triangle AC, whose sides are

given in position, and which is used for the purpose of defining
the position of any figure in its plane, is called the triangle of

reference, and its sides the lines of reference.

* This theorem was first published in the Philosophical Transactions in

the Author's "
Cyclides and Sphero Quartics."
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DEF. ii. If the perpendiculars from any point P to the sides

of the triangle be denoted by a, /?, y ; a, /?, y A
are called the TEILINEAB. or NOEHAL CO-OKDI-

NATES of P.

If the point P be on the side J3C, the

perpendicular from it on JBC will vanish.

Hence in trilinear co-ordinates the equation

of BC is a = 0. Similarly the equations 'of B C

CA, AB are (3
=

0, y = 0, respectively. In order to pass from

trilinear to Cartesian co-ordinates (a problem of frequent recur-

rence) it is necessary to express the equations of AB, BC, CA
in x, y co-ordinates. For this purpose the most convenient are

the standard forms

x cos a + y sin a - p = 0, x cos (B + y sinft p' = 0,

x cos y + y sin y
- p" = ;

the origin being in the interior of the triangle. From this it

follows that the normal co-ordinate of any point P correspond-

ing to any line of reference is positive or negative, according as

P and the opposite summit of the triangle are on the same or on

different sides of that line.

Cor. 1 . The normal co-ordinates of any point P in the in-

terior of the triangle of reference are all positive, and for any
exterior point two are positive and one negative.

Cor. 2. If a, /?, y be the trilinear co-ordinates of a point P,

x, y its Cartesian co-ordinates,

a = x cos a + y sin a -
p, ft

= x cos /? + y sin (3
-

p',

y = x cos y + y sin y
-
p".

Observation. In these identities it will be seen that a, , y are used

with different significations ; but after a little practice this causes no

inconvenience.
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Cor. 3. If a, b, c be the lengths of the sides of the triangle of

reference, A its area, a, (3, y the normal co-ordinates of any point

in its plane,
aa + lp + cy

= 2A. (142)

Cor. 4. If R he the circumradius of the triangle of reference,

a sinA + (3 sin B + y sin C = A/.R. (143)

EXERCISES.

1. Find the equations of the bisectors of the angle G of the triangle of

reference. The equation of any line through C is of the form a tc&, where

k denotes the ratio of the sines of the angles into which C is divided. Hence

the internal bisector is a j8
=

0, and the external a + = 0. Both are

included in the equation a = 0. (144)

2. Find the equation of the median that bisects AS.

If D be the point of bisection of AS, we have SD = DA. Hence the

ratio of section of the angle C is sin Sjein A = k, and the equation of CD is

osin J4-sin.B = 0. (145)

3. Find the equation of the perpendicular from C on AS.

Here the ratio of section is coaSjcosA. Hence the perpendicular is

a cos A -
/3 cos B = 0. (146)

Observation. The equations of the internal bisectors of the angles of

the triangle of reference, viz.,

a - 5 =
0,

- 7 = 0, 7 - a = 0,

may be written in the form a = /3
= y, where, by omitting any letter, we

have the equation of the bisector of the angle between the sides denoted by

the remaining letters. Similarly the three medians are

a sinA = j3 sin S = y sin C,

and the perpendiculars
a cos A =

ft cos B = y cos C.

4. Three lines whose equations are in the form la = mf) = ny, are con-

current.

For these equations are equivalent to

la m& =
0, m/3 ny =

0, ny la =
;

and these, when added, vanish identically. Or thus, the co-ordinates 111.

1/m, I/M satisfy the three equations.
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47. The lines la -
mft =

0, aj'I
-
ft/m = are equally inclined

to the bisector of (a/3) .

For the ratio of section of the first is Ijl: 1/m; that is, as

m : I, and the ratio of section of the second I : m. Hence one

makes the same angle with a which the other makes with ft.

Cor. 1 . If three lines through the summits of a triangle be

concurrent, the lines equally inclined to the bisectors of its

angles are concurrent. For if the three first be la = mft = ny,

the others are a/I
= ft/m = yfn.

DEF. i. Two points P, P', which are such that lines drawn

from them to the summits of the triangle of reference are equally

inclined to the bisectors of its angles are called isogonal conjugates

with respect to the triangle.

Cor. 2. If a, ft, y, a'ft'y' be the normal co-ordinates of P, P',

aa' =
ftB'

=
yy'. (147)

For aa' = CP sinBCP . CF sinB CP'

= CP sinPGA . CP' sin P'CA =
ftft'.

DEF. ii. The isogonal conjugate of the centroid of the triangle

of reference is called its symmedian point, and the lines from the

angles to the symmedian point the symmedian lines of the triangle.

Their equations are

a/sinA =
ft/sinB =

y/sin C. (148)

48. If the lines -a = -8 = rv meet in O. and ifl' be the iso~
c a 6

'

gonal conjugate o/O, the angles &AB, &BC, &CA, l'BA, tl'CB,

Q'A C are all equal.

Dem. Let lAB be denoted by a>, then CASl = A - <o
;
and

since the equation of Al is

c o a c
i A \

a
P - T T> we have sin (A -

to)
= - sm w.

a b
' a b

Hence, by an easy reduction,

cotw (that is cot SlAB] = cotA + cotB + cot (7;
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and it may be shown that the cotangents of fiBC, flCA, &c.,

have the same value.

DEF . The points ft, ft' are called the Brocard points, and w the

Brocard angle of the triangle.

49. The ratios of the normal co-ordinates of a point are

sufficient to determine its position. For all the points of a

given line drawn through A are such that ft : y is constant.

The following Table contains the normal co-ordinates of some

special points :

If h, h', h" denote the altitudes of the triangle of referenceAB C,

the co-ordinates of--

A are A, 0, ;
B are 0, A', ;

C are 0, 0, h"
;

centroid $h, $h', \h" ;
or simply 1/0, l/b, Ijc ;

the symmedian point a, I, c
;

incentre r, r, r; or 1, 1, 1
;

excentre - ra ,
ra ,

ra ,
&c.

;
or -

1, 1, 1, &c.
;

circumcentre cos .4, cosB, cos Cf

;

orthocentre sec A, sec .5, sec C;

ft c/b, ajct I]a;

O' b/c, c/a, a/b.

Certain points related to the triangle have been named

after the Geometers Steiner, Tarry, Nagel, and others. These

will occur in the course of the work.

Cor. The orthocentre is the isogonal conjugate of the

circumcentre.

BARYCENTEIC CO-OKDINATES.

50. The areal co-ordinates of a point M are the areas of the

triangles BMC, CMA, AMB, formed by joining Mto the summit*

ofABC. Since M is the centre of gravity ( 14) of masses pro-

portional to the areas BMC, CMA, AMB, placed at the points

A, B, C, the areal co-ordinates are called by French and German

Geometers BAETCENTEIC CO-OEDIXATES.
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If the area, i BMC, CMA, AMB be divided by ABC, tbe

quotients are cal
1 ed the absolute Barycentric co-ordinates of M.

Hence if these be t noted by

<*!, A, y,,. ai + ft + y^l. (149)

Cor. \. If
a., P, y be the normal, and at , plt y! the Bary-

centric co-ordinates of a point M, then

Cor. 2. If (a, P, y), (a', /3', y') be the absolute normal, and

(oj, fa, yi), (a/, /?/, yi} the absolute Barycentric co-ordinates of

two points M, M', then the co-ordiaates of a point P such that

.2/P : M'P : : ^l : m are respectively

la' + ma la^ + ma l

-;--
, &c., and -^- , &c. (151)

1 + m l + m

51. The lines la - m(3 = 0, a/I- (3/m = meet the side AB of

the triangle of reference in points equally distant from its middle.

For \ila-mp=Q meet AB in D, we have BDC . I = CDA . m.

Hence BD : LA : : m : I
;
therefore (I + m~) DA = mBA. Simi-

larly if ajl
- p/m meet AB in D', we have (I + m) BD' = mBA.

Hence BD' = DA
;
therefore D, D' are equally distant from the

middle point of AB.

DEF. Two points P, P' which are such that pairs of lines con-

necting them with any angle of the triangle meet the opposite side

equidistant from its middle are called isotomic conjugates with

respect to the triangle.

Cor. If (a, P, y), (a', P', y') be the Barycentric co-ordinates

of isotomic points with respect to the triangle, then

aa> = pp> = y7'. (152)



66 The Right Line.

52. The following are the Barycentric co-ordinates of some

special points :

The Lemoine or symmedian point, az
,

b~ yc*.

The Brocard points Q, }', . ^, -,
-

, -, -, s .

d C Oi

The third Brocard point, .
, 7^,

.

The centroid, 1, 1, 1.

The circumcentre, . . . sin 2A, sin 2JB, sin 2 C.

The orthocentre, .... tan A, tan JB, tan C.

The incentre, sin A, sin JB, sin C.

The excentres, . . . -
- sin A, sin JB, sin C, &c.

Steiner's point, .... ^ -,
^j-, -^ 7;.

Barycentric co-ordinates are for many investigations simpler

tlian the normal, but not always. Whenever we employ them

we shall state it explicitly.

53. To find the equation of thejoin of the points a'/3'y' , a"(3"y".

The determinant

<*, > 7

/*', /
", /?", y"

= 0, (153)

or say La + Mft + Ny = is evidently the required equation, for

it contains a, /8, y in the first degree, and is therefore a right

line. Again, if for a, /?, y be substituted the co-ordinates of

either point, the determinant will have two rows alike, and

therefore vanishes identically. Hence the line (153) passes

through the given points. The foregoing will be the form of

the equation whether the co-ordinates are normal or Barycentric.

If they are normal, Z, Jf, N are respectively twice the areas of

the triangles formed by a'fi'y', a"(3"y", and the summits of the
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triangle of reference multiplied respectively by sin A, sin JB,

sin C. But these triangles having a common base are propor-

tional to the perpendiculars on it from the points A, B, C.

Therefore, if these perpendiculars be denoted by X, p., v, the

equation (153) may be written

(X sin A) a+
(yu.

sin
) ft + (v sin C}y =

0, or Xa+ fjibfB + vcy = 0.

That is in Barycentric co-ordinates A.a+ p.fi + vy= 0. Hence when

the equation of a line is written in Ba/rycentric co-ordinates the

coefficients A, /*,
v are proportional to the perpendiculars on itfrom

the summits of the triangle of reference a result which is other-

wise evident.

EXERCISES.

1. Find the equations of the joins of the four points o, + , + 7.

Ans. a/a' + 0/0' = 0, /' + 7/7' = 0, 7/7' + a/a'
= 0. (154)

Hence they intersect in pairs at the summits of the triangle of reference.

b, c

M, N

0, -c, b 0, -e,
j

o', ', 7'

a', )3", 7

3. Find the equations of the joins of the following pairs of points :

1. Orthocentre and centroid.

Ans. a. sin 2A sin (.5- C) +0 sin IB sin (C- A) + y sin 2 Cain (A-B) = 0.

This is called the line of Euler. (156)

2. The circumcentre and symmedian point (diameter of Brocard).

Ans. asin(B-C)+&sm(C-A)+y sin (A - )
= 0. (157)

3. The Brocard points n, fl' (<Ae Brocard line) .

2. The determinant 2A (a'- a"). (155)

For
6, e

M, N ', 2A

0", 2A

Ant. (a
4 -4V) -+ . (158)

c

4. The centroid and symmedian point.

Ant. (i
2 -cj

)a-f (c
2 - a2

) 60+('-&) 07 = 0. (169)

f 2
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TRILINEAB. POLES AND POLABS.

54. COTES'S THEOKEM. If on each radius vector through a fixed

point 0, and meeting the sides of the triangle of reference in the

points RI, RZ, 3 ,
there be taken a point R so that

3/OR = I/OR, + l/OR2 + l/OR3 .

The locus of R is a right line.

Dem. Let be taken as origin of Cartesian co-ordinates, and

the equations of the sides of ABC be given in their standard

fonns x cos a + y sin a - p = 0, &c. Then, if OR make an

angle 6 with the axis of x, we have

OR1 =p'/coB(0-a), OR2 = p"/cos(6-ft), OR3
= p'"lcos(0-y).

Hence denoting OR by p, we get

3_cos(0-a) cos (0
-

ft) cos.(0
-

y)-= - -~-

cos(0-a) 1 cos (6 -ft) 1 cos(0-y) l_ ft
'

-p
+
-y7

"
~P

+
~1^~ ~~P

=

x cos a + y sin a -
p' x cos /3 + y sin /3

-
^?"

p"

x cos y + y sin y -
_p

;//

= 0,
p"'

or as it may be written

alp'+ft/p"+ylp'" = 0. (160)

DEF. The line (160) w called the polar line of with respect

to the triangle, and is called the pole of the line (SALMON, Higher

Curves), or for shortness, trilinear pole and polar (MATHIEU).

Cor. 1. The polar line of the point a', ft', y'

is

X

a/a' + ft/ft' + yjy'
= 0. (161)

Cor. 2. The trilinear polar of a point has the same form in

normal and Barycentric co-ordinates.
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Cor. 3. If la. = mfl = ny be three concurrent lines, the tri-

linear polar of their common point is

la + m(3 + ny = 0. (162)

Cor. 4. The line connecting a point with any summit of

the triangle of reference and the trilinear polar of meet the

opposite side in points that are harmonic conjugates with respect

to the remaining vertices. For making y = in la -f mfi + ny = 0,

we get la + m/3 = 0, which is the harmonic conjugate of la - mft

= with respect to a and /?.

THEORY OF XHE COMPLETE QUADRILATERAL OR QUADRANGLE.

55. DEF. i. The figure formed by four lines a, b, c, d produced

indefinitely, no three ofwhich are

concurrent, is called a complete

quadrilateral. The lines are

called the sides of the quadri-

lateral. The intersection of

the sides its summits. There

are six summits, which consist

of three couples, A, A'; B, B';

C, C' of opposite summits. The

joins of opposite summits, viz.

AA', BE1

, CC', are called the

diagonals. The triangle formed by them is called the diagonal

triangle of the quadrilateral. (STEINER.)

DEF. ii. The figure formed by four points A, B, C, D and

their joins is called a complete quadrangle. The points are called

its summits ; and thejoins of the summits are called its sides. TJiere

are six sides which consist of three pairs of opposite couples, AB and

CD, EC and AD, CA and BD. The point of intersection of two

opposite sides is called a diagonal point. There are three of these

points. The triangle formed by them is called the diagonal triangle

of the quadrangle.
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DBF. m. A quadrilateral whose three diagonals are the sides

of the triangle of reference is called a standard quadrilateral ; and a

quadrangle whose diagonal points are the summits of the triangle of

reference is called a standard quadrangle.

56. The equations of any four lines F = f\x +fzy + /3
= 0,

no three of which are concurrent, are connected by an identical

relation of the form

fF + gG + hH + kK=Q (163)

where f, g, h, k are constants.

Dem. Such an identity requires that ffi + gg\ + hh^ + kki = 0,

fft + 99* + hhz + kk2 =0, ff3 + gg3 + hh3 + kk3
= 0. Hence (SA.LMON,

Modern Algebra, page 4), the values of/, g, h, k are proportional

to the minors of the matrix

/i> ffi> hi,

./ 2> ^2) *^2>

/3> <?3, h3 ,

These minors each differ from zero, since no three of the lines

are concurrent. This proposition may be stated and proved

differently as follows :

If a, /?, y be any three lines forming a triangle ABC, the

equation of any fourth line DF is of

the form la + mft + ny = 0.

Dem. Now since CD passes

through the intersection of a and /? its

equation is of the form la + m(3 =
0,

30, and since DF passes through
the intersection of la -f mft = 0, and

y = 0, its equation is the form

la + mf$ + ny = 0.

57. In every complete quadrilateral each diagonal is divided

harmonically by the two others.
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Dem. It results from (163) that fF+ gG = - (hH+ TcK).

Therefore the equationsfF+gG = Q, hH + TcK'= represent the

N-P=o

same line. This line passes through the point of concourse of

F and 6?, and through that of H and K. It is therefore the

diagonal M, from which it follows that the equations of the

diagonals are

M^fF+gG = - (hH+ TcK} = 0,

P ^fF + TtK = - (gG + hH) = 0.

Hence N - P = (hH - IK) ;
but N - P = represents the

line passing through 7, and hH- MTthe line passing through 4.

Hence the equation of the line 47 is hH- TcK=
;

it is there-

fore the harmonic conjugate of M = hH + kK= with respect

to the lines H= 0, K =
; .-. (2578) = - 1.

Cor. In every complete quadrangle any two diagonal points are

separated harmonically by the pair of opposite sides passing

through the third diagonal point.

For, if the complete quadrangle be 2356 the diagonal points

are 1, 4, 7, and the line 17 is divided harmonically by the lines

35, 26. This follows from the fact that the pencil (4-2578) is

harmonic.
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58. The quadrilateral whose sides are la + mft + ny =
(1),

/a + mfi-ny = 0(2), Ja-w/3+y = 0(3),
- la+ m/3 + ny = 0(4),

or say the four lines la m(3 ny = is a standard quadrilateral.

For (l)-(2)s 2ny =
0, (3)+(4) = 2wy = 0. Hence y = is a

diagonal.

59. DBF. Two triangles which are such that the lines joining

corresponding summits are concurrent are said to be in perspective,

the point of concurrence is called the centre ofperspective.

PROP. Two triangles whose corresponding sides intersect in

coliinear points are in perspective.

Dem. Let one be the triangle of reference, and let the line

of collinearity be la + mft + ny = 0. Then evidently the equa-

tions of the sides of the other triangle are I'a + mft + ny = 0,

la+ m'(3 + ny = 0, la + mft + n'y
=

;
and taking the differences

of these in pairs we get the concurrent lines (l-l')a=(m-m')f3

=(n-n')y, which are evidently the joins of corresponding vertices.

DBF. The line of collinearity of the points of intersection of

the corresponding sides of triangles in perspective is called their

axis ofperspective.

EXERCISES.

1. The points (a, ff, y') ; (- a', 0', 7') ; (a',
-

0', y') ; (a', 0% - y') are the

summits of a standard quadrangle.

For the pairs of opposite sides are

a/a' $J0 = Plff yly' = yjy a/a'
=

0,

equation (154), and each pair intersect in a summit of the triangle.

2. The triangle formed by any three sides of a standard quadrilateral is in

perspective with the triangle of reference, the axis of perspective being the

fourth side of the quadrilateral, and the triangle formed by any three summits

of a standard quadrangle is in perspective with the triangle of reference, the

centre of perspective being the remaining summit of the quadrangle.

3. The trilinear polars of the four summits of a standard quadrangle form

the sides of a standard quadrilateral.

4. The centres of perspective of the triangle of reference and each of the

four triangles formed by the sides of a^standard quadrilateral form the summits

of a standard quadrangle, and the axes of perspective of the triangle of

reference and each of the four triangles formed by the summits of a standard

quadrangle form a standard quadrilateral.
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5. If the lines la. + m& + ny = 0, all + ft/m + yjn = 0, meet the side*

BC, OA, AB, of the triangle of reference in the points A', B', C'; A\, B\, d,

respectively, then the pairs of lines AA', AA\ ; BB', BB\ ; CO', CC\, are

isogonal or isotomic conjugates according as the co-ordinates are normal or

Barycentric.

6. If two points he isogonal conjugates, their trilinear polars are isogonal

transversals ;
and if they he isotomic conjugates, the polars are isotomic

transversals.

60. To find the length of the perpendicular from the point

a', ft', y' on the line la + m(3 + ny = 0.

This equation in Cartesian co-ordinates is

^l (x cos a + y sin a - p] =
;

and tj.e distance of the point x'y' from this line is

31 (x' cos a + y' sin a - p}

cos a)
2 + ($1 sin a)

2 '

or (2<la'} / -v/^
2 + m* + n* ~ %mn cos ^ ~ 2w7 cos -B - 2/w cos (7

;

putting \/l
z+mz +ri* - 2mn cos A - 2nl cos - 2lm cos (7 = Q.

The perpendicular distance of a'/3'y' from (la + m(3 + ny} is

(la' + w/3' + wy') / O. (164)

61. To find the angle between the lines

la + m(3 + ny = 0, I'a + m'(3 + n'y
- 0,

let V denote the angle between the lines. Then if when

transformed into Cartesian co-ordinates they become

Ax + By -f C = 0, A'x + B'y + C' = 0,

. AB'-A'B
we have sin r -

The numerator of this fraction is

A, B

A', B'

I cos a+ m cos (3 + n cosy, I sina+m sin/8 + w siny
or

I' cos a+m'cos (3 + n' cos y, I' sin a+ m' sin ft + n' sin y
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That is the product of

I, m, n

I', m', n'

Hence the numerator is

cos a, cos cos y

sin a, sin ft, sin y

I', m', n'
, (165)

sin A, sin
,

sin C

and the denominator is evidently OQ'. See 60.

Cor. 1. The vanishing of the determinant (165) is the con-

dition of parallelism of the lines

la + mft 4 ny = 0, I'a + m'(3 + n'y
= 0.

Cor. 2. The equation of the line at infinity is

T
f*J

D.LJ-1 J-/ T J O. j \^ J

for the determinant (165) is the condition that the lines

/a4 mft 4 ny = 0, I'a + w'/3 4 n'y
=

should intersect on that line.

Cor. 3. If Ax+ y+ C=Q, A'x + 'y+C'=0 be per-

pendicular, AA' + BB' = 0, 27. Hence the condition that

la 4 m(3 + ny = may be perpendicular to I'a + m'ft + n'y
= is

(21 COB a)(2l' cos a) 4 2(1 sin a) 2(1' sin a)
= 0,

or II' 4 mm' 4 nn' - (mn
r + m'n) cosA -

(nV 4 n'l) cos B
-(lm' + l'm)coBC=0. (167)

Cor. 4. Every line is parallel to the line at infinity, and

every line is perpendicular to the line at infinity. The first

follows from (165) by substituting sin A, sin JB, sin C for Z', m', n'

and the second from (167).

Cor. 5. The condition that la + mfi + ny = may be perpen-

dicular toy is n = m cos A + I COB. (168)

Cor. 6. The angles which la 4 m(3 + ny = Q makes with a, /3, y
are

sin Va = (nsmJB-m sin C) /Q, sin V$ =
(I sin C-nBmA}/ Q,

sin Vy = (m sin A - I sin 2?)/Q. (169)

\
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CYCLIC POINTS ISOTEOPIC LINES.

62. The function denoted by 3
2

, 60, being the sum of two

squares breaks up into the two imaginary factors

(2,1 cos a) V- 1 (21 sin a),

or leia + me1? + nelv and /<rta + me~^ + ne~iy.

The quantities eia
,

i?'/
3
,
e^

, and <rla
,

<rl

P, e^y are the co-ordi-

nates of two imaginary points, say the points /, J, which are

called cyclic points. They are at infinity, for if we form the

equation of their join we get a sin -4+/3 sin J5+y sinC'=0, which

is the line at infinity, and we shall see in Chapter in. that every
circle passes through them.

63. DEIV Thejoin ofany real point to either lor J is called an

isotropic line.

The join of a'p'y' and 7 is

a = 0.

or Xe'a + Ye<-$ + Zvi = 0, where X =
(fiy

f -
/3'y), &c. Similarly

the join of afft'y' and Jis Xe-ia + Ye~^ + Ze~^ = 0. Hence the

product of the equations of the two isotropic lines from a'/B'y' to

/, J is

X*+Yz +Z2 -2XYcosC-2YZ cosA-2ZXcos = 0. (170)

64. If Z7, Lj denote the powers of the points I,Jwith respect

to the line L = la + mfi + ny = 0. Then the condition (167) that

the lines L = la + mfi + ny = 0, L' = I'a + m'/3 + n'y
= may be

at right angles, can be written LXL'

j + L'ILJ = 0. Now let M
be the finite point of intersection of Z, Z', and if L pass through

/, the condition just written proves that L1

passes through /;

therefore L1
coincides with L. Hence a line which passes through

either cyclic point is perpendicular to itself.
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EXERCISES.

1. Find the equation of the perpendicular to the side 7 of the triangle of

reference at its middle point.

Ans. a sin A -
ft sin B + y sin (A - B) = 0. (171)

2. Find the condition la + m$ + ny = may be perpendicular to itself.

Ans. n = 0.

3. Find the equation of the line af/3'y parallel to la 4- m& + ny.

Let I'a + m'0 + n'y = he the required parallel ;
then since it passes

through a'&y', we have Pa + m'&' + n'y' = ;
and the condition (166) of

parallelism may he written

f (msiaC n sin B) + m' (n sin A - I sin (7) + n (I sin B - m sin A).

Hence eliminating f, m', n', we get

o, a', m sin C - n sin B

/3, ', sin ^ - I sin C (172)

7, 7', J sin B - m sin .4

4. Prove that

tanF61=-
mn' - m'n) sinA + (nf - n'l) sin B + (lm'

-
I'm) sin G

U'+mm'+nn'-(mn'-\-m'n)co6A-(nl'+n'l)coaB-(lm'+l'm)coaC'

(173)

5. Find the equation of the perpendicular to la + mft + ny through a'P'y.

6. If 80, St, Sc be the distances of A, B, C from the line la + mfl + ny =

prove that

4A2 = 2a2S 2 - 2 2i 8 84 cos C. (174)

Let ^?, y, r be the altitudes of ABC, we have 8fl
=

Ipjtl, 8& = tnqffl,

8e = r/ft. Hence / = fl . 8 /p, m = Q . Sj/^, n = Q. 8c/r,

but

H2 = P + m* + n* - 2lm cos C- 2 mn coaA - 2nl cos B ($60)

therefore

* 5o* o ^ 8 8 cos (7 , ^
2A .l=2-T-22 -

; but p =
,
&c.

P P 9 a

Hence the proposition is evident.

7. Prove that the parallel through a'P'y' to the join of a"0"y", a'"&'"y'"

is

, 0, y

'=0. (175)
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8. Prove that the join of the orthocentre and centroid is perpendicular to

o cos A + j8 cos B + 7 cos (7=0.

DBF. A line DE cutting the sides CA, CB of the triangle of reference so

that the triangle CDE is inversely similar to CBA is called an antiparallel to

the base.

9. If la + m& + ny be antiparallel to 7, prove that

I sin A m sin B - n sin (A B) = 0. (176)

10. Prove that

4A2 = 2 2
(8

-
8b)(8a

-
S). See ex. 6. (177)

11. If la + m& + ny = he the equation of a line in absolute Barycentric

co-ordinates, prove that the distance of the point a', &', 7' from it is

la' + mp + ny'. (178)

12. If .R be the circumradius of the triangle of reference, prove that the

perpendiculars from its summits on Euler's line, equation (156), are

Q (B - C) I Vl - 8 cos A cos B cos C, &c. (179)

13. Prove that the locus of the centres of mean distances of the points in

which parallels to la. + >j8 + ny = meet the sides of the triangle of reference

is,

o/( sin B - m sin C) + 0j(l sinC-n sinA) + yj(m sinA-l sin.B)= 0. (180)

[Make use of equations (169).]

14. If the points a'&y, a"&"y'
f
subtend a right angle at 0^7, prove that

(y'a" -f y"a) cosA 4- (ffy" + 0"y') cosB -
2y' y" cos 0} = 0. (181)

15. If the equation aa? + bp + cy* -f 2aj8 + 2f0y + 2yya = represent
two perpendicular lines, prove that

+ b + c- 2fcosA- 20 cosB -2hcosC= 0. (182)

16. If the same equation represent two parallel lines, prove that

, h, g, sin A

h, b, f, sin B
, . =0. (183)

g, /, c, sin C

sin A, sin B, sin C,
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DISTANCE BETWEEN Two POINTS.

65. To find the distance 8 between two points a^yi, a2/?2y2 .

From the given points draw perpendiculars to the sides AS,
AC of the triangle, and from a2/?2y2 draw parallels to AB, AC.
Then denoting MN by ?, we have

S2 rinl4 = /
2 = (ft

-
#,)' + (yi

-
72)' + 2 (A -

&)(yi
-
y2) cos A,

but (ft
-

ft) = (i -
aJy)/2A, yi

- yz
= (Jf- 3Z)/2A ;

therefore (155)

4A2 S2 sin8^ = (cZ
- aNJ + (aM -

JZ)
2 + 2 (cZ - aN}(aM

- JZ) cos -4

= a2

{Z
2

Hence
__

8 = xVZ2 + JP + JV2 - 2Jf^V cos A - 2NL cos B - 2LM cos (7.

(184)

Cor. The quantity under the radical is the power of either

of the given points with respect to the pair of isotropic lines

drawn from the other to the cyclic points.

EXERCISES.
1. Prove that

52 = Q8i
-

ff2)
2 sin2g + (71

-
72 )

2 8Jn 20}
_

2 sin A sin sin C

This may be reduced to (184) by substituting for (ai
-

oj), &c., their

values from equation (155).
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2. Prove that 5* = - -
/8) (71

-
72) (186)

3. The distances of aifiiyz from the summits of the triangle of refe-

rence are

V(a
2+ ft* + 2aj3 cos C) /

sin C, &c. (187)

4. Prove that the distance between the points of intersection of

la + mb + ny =

with the lines ha + m\$ + n\y = 0, ha. + mz& + nzy = 0,

is n
(I, mi, nz)l{(l, MI, sin C}(1, mz, sin G)}. (188)

where
(/, mi, nz) denotes the determinant

I, m, n

h, mi, n

h, mi, MZ

AREA OF TRIANGLE.

66. To find the area of the triangle whose summits are a^iy^

a-zPzy*, "3/^373-

If the axes be oblique, the area of the triangle whose sum-

mits are x^i, x2y2 ,
z3y3 ( 8), is

sin w

*i 2/oi 3/9.

i, i, i

But taking as axes the lines a = 0, ft
= 0, we have

sin to = sin C, a^sin o> = at , ^isin w =
^8^ &c.

;

therefore

,
cosec C

a3

1, 1, 1

cosec C
~2T~

a3

r, T, T

Now, taking T = a sin A + ft sinB + y sin C = A/JS, we get,
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diminishing the last row by the sum of the first multiplied

by sin ^4 and the second by sin B,

0-1, 0.2 , 0.3

ft, ft 2A (189)

Or thus : "Writing the equations at
= 0, &c., in Cartesian

co-ordinates,
x cos d! + y sin a -

pi = 0, &c.

By multiplication of determinants, we have

cos a, sin a, -js

cos/?, sin/?, -_pa

cosy, siny, -pz

<Zj ,
a2 , 013

ft, ft, ft

yn 7' 73

therefore A'

Cor. 1. If aj, ft, yi, &c., be not the actual lengths of the

co-ordinates, let them be

and we get A, = .Sw^ms (ajfty3)/2A. (190)

Cor. 2. To find the factors mit m^, m^, we have evidently

w^d! sin A -f w^ft sin JB + miyi sin C = T = A/5 ;

or w^Tj = A/jR ;

therefore m' = A/57\. (191)

Cor. 3. A! =A2

(a 1fty3)/(25
2ri

r2rs). (192)

EXERCISES.

1. Find the factors w of proportionality for the following points

1. The symmedian point ;
2. The circumcentre ;

3. The orthocentre.

2. Prove that the area of the triangle formed hy x cos a + y sin a p and

the line pair axz + 2hxy + by
2 = is

p* VA2 -
abl(a sin2o - 2A sin a cos a -f b cos2o). (193)
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3. Find the area of the triangle formed by the lines

ha. -f miP + n\y = 0, ha. + tt? 2 + n^y = 0, I3a -f 3j8 + MS? = 0.

Solving between the second and third, we get the co-ordinates of their

point of intersection proportional to the minors L\, M\, Ni of the determi-

nant (Ji23). Hence, in this case,

Ti = L\ sinA + Mi sin B + Ni sin C, &c.
;

and substituting in equation (191), we get the area.

4. If (\i, p.\, v\) ; (A.2, f.2, vz) ; (\s, us, vz) be the absolute barycentric

co-ordinates of three points, prove that the area of the triangle whose sum-

mits they are is A (\1JU2P 3)-

COMPLEMENTARY POINTS AND FIGURES.

67. Let'A', B', C' le the middle points of the sides BC, CA,
AB of the triangle of reference. Then, if M, M' be homologous

points with respect to ABC, A'B' C', M' is called the complemen-

tary of M, andM the anti-complementary of M',

If G be the centroid of AB C, then it is also the centroid of

A'B'C'; that is, it is their double point. Hence G divides

MM' in the ratio 2:1. Hence if (o/ty), (a'/S'y') be the

absolute barycentric co-ordinates of M, Mf

,
the co-ordinates of

G are~ a + 2a' f3 + 2(3'
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SUPPLEMENTARY POINTS.

68. If a, ft, y be the normal co-ordinates of a point M, the

point M', whose co-ordinates are ft + y, y 4- a, a + ft is called

the supplementary of M.

a' ft'. y'
By definition. -^

= = ^>
ft + y y + a a 4 ft

Hence, if we seek whether M, M' can coincide, we must have

_o_ ft y a-f ft + y

ft + y y+a a+ ft 2 (a + ft + y)

These will be satisfied either by a =
ft
= y ;

that is, by the

incentre of the triangle of reference, or by the points of the

line a + ft + y = 0, which is the trilinear polar of the incentre.

EXERCISES.

1. Any point and its supplementary are collinear with the incentre.

2. If M describe the line la 4 wjS + ny = 0, prove that M" describes

(I 4 m + n) (a + + 7)
- 2 (la + wjB + ny) = 0. (197)

3. The points supplementary to the summits of the triangle of reference

are the points A', S', C', where the internal bisectors meet the opposite sides.

For, putting = in (197), we see that the supplementary of any line

la + tn = passing through C is the line (I m)(a-&)(l+m)y passing

through C".

4. The supplementary of the triangle whose summits are the centres of

the escribed circles is the triangle of reference.

TRIANGLES IN MULTIPLE PERSPECTIVE.

69. "We have given, in 59, the fundamental property of

triangles in perspective ;
but here we shall enter into more

detail.

To find the condition that the triangle of reference may be in

perspective with one whose summits have the co-ordinates a^yj,
or whose sides have the equations

= 0, /,a 4- mzft 4 mzy = 0, 7sa 4- t>isft + ny3 = 0.

1. The equations of the joins of corresponding summits are

easily found to be ft/ftt
=

yjy^ y/y2
=

a/oj ; a/as
=

ft/ft3 . Hence,

eliminating, the condition of concurrence is

(198)
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Or thus

Let la + mfi + ny = 0, the axis of perspective. The lines

'

+ ^y = . . . meet B C, CA, AB in the same points as

m, mi n n2 I 13

n ni
'

I l-i

' m n3
'

2. If the minors of the determinant (/i#&2w 3)
^e as in 66,

Ex. 3, Zj, J/i, JVj, &c., the summits of the triangle whose sides

are ?xa + m$ + n^y
- 0, &c., will be these minors. Hence, from

(198), the required condition is

M]N-iLs = N-^L^M^ (199)

are concurrent in a given point, say (1, 1, 1), the co-ordinates

of A lf BI, CL are of the following forms (mi, 1, 1), (1, m^, 1),

(1,1, m3\ and the triangle ABC can be in six different ways
in perspective with A^BiC^

1. ABC, Ai^iC'j; 2. ABC, B^C^-, 3. ABC, C^B^,
4. ABC, A.C.B,; 5. ABC, C^A^ 6. ABC, B^A^.
The equation (198) gives for these different cases the follow-

ing conditions, viz., for

2 and 3. = 1
;
4. mz

=m3 ;
5 ma = w2 .

71. TA<? quantities m L , m^, m3 denote anharmonic ratios.

A

For let P be the point (1, 1, 1), the equations of BP and

G 2
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BA l are a = y and a = my. Hence m
v is equal to the anhar-

monic ratio (AA'PAi). Similarly,

m* = (BB'PBJ, m3
=

( CC'PC,}.

From 70 we have the following cases of multiple per-

spectives :

(a) If mz
= m?, ABC is in perspective with A 1B1 C1 and with

A\CiBlt and the triangles are biperspective ;
the second centre

of perspective is on the line AA t . Similar results follow from

m, = MI or ml
= mz .

(b~)
If m^m^m^ =

1> there is triple perspective, viz. ABC with

A&d, and with B^C^ and CVABV .

(c) If m
l
= m2

= m3 ;
that is, if (AA'PA,} = (BB'PB^

=
( CC'PCi), there is quadruple perspective.

A
,

In order to construct, AiBiCi in quadruple perspective with

ABC, being given ABC and P.

Let AP, P, CP meet BC, CA, AB in A', ', C', respec-

tively. Join B' C", cutting B' C in A", and drawing any line

through A", cutting BP in B^ and CP in C^ Again, let

C" be the point of intersection of A'B1 with AB. Join C" lt
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cutting AB in AI. Then A 1B1C 1 has quadruple perspective

with ABC.

For, join A"P, C"P, and it is evident that (AA'PAJ

(d] The triangles ABC, A^B^C^ will have quadruple per-

spective if mi = mz
= l!^/m3 .

(<?)
If OT! = mz

= m3 is equal to an imaginary cube root of

unity, there will be a sixfold perspective, but then the triangle

A vB^Ci is imaginary.

EXERCISES.

1. If in the triangle ABC we inscribe A'B'C' in perspective with ABC;
and in A'B'C', A"B"C" in perspective with A'B'C', then A"B"C" is in

perspective with ABC.

2. If. A'B'C' be the orthique triangle of ABC (that is, formed by the

feet of perpendiculars) and A"B"C" the orthique of A'B'C', show that

the normal co-ordinates of the centre of perspective of ABC and A"B"G"

are sec A cos 2A, &c., and that it is a point on EULER'S line.

3. In the same case, if A'", B'", C'" be the summits of the triangle formed

by tangents in A, B, C to the circle ABC, the normal co-ordinates of the

centre of perspective of A'B'C', A'"B'"C'" are

sinA tan A, sin B tan B, sin C tan C,

and it is a point on EULER'S line. (Gos.)

4. Prove that the isogonal conjugate of the centre of perspective in Ex. 3

is the isotomic conjugate of the orthocentre of the triangle ABC, and also

the anti-complementary of its symmedian point.

DBF. Three points, whose baryeentric co-ordinates are (a'&'y"), (fi'y'a),

(y'a'fi"), is called an isobaryc group of points.

5. The triangle formed by an isobaryc group is triply in perspective with'

the triangle of reference.

6. If the triangle ABC is in perspective with A\B^Ci, the sides of

A\B\C\ have equations of form

l\x + my + nz = 0, Ix + m\y + nz = 0, Ix + my + n\z = 0.

Deduce from these equations the conditions of multiple perspective.
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SECTION III. COMPARISON OF POINT AND LINE

CO-ORDINATES.

72. DBF. The coefficients in the equation of a line are called

line co-ordinates. Because, if the coefficients be known, the posi-

x y
tion of the line is fixed. Thus, let - + 7

- 1 = be the equa-
a b

tion of a line
; then, putting =

,
-
^
=

v, we get
(t

xu 4 yv + 1 = 0, (200)

In this equation u, v are called line co-ordinates, and x, y

point co-ordinates. If x, y be fixed, and u, v variable, we shall

have different lines, but each shall pass through the fixed

point (xy). Thus, if xy be the point (ab] ; then, in Modern

Geometry, the equation

an + bv + 1 = (201)

is called the equation of the point (ab\ and the variables u, v

are the co-ordinates of any line passing through it. Hence we

have the following general definition : The equation of a point

is such a relation between the co-ordinates of a variable line which,

iffulfilled, the line must pass through the point ; thus, if the point

co-ordinates 00 satisfy the equation of a line, it must pass through

the origin ;
and if the line co-ordinates 00 satisfy the equation

of a point, it must be at infinity.

73. The following examples will illustrate the reciprocity

between both systems of co-ordinates :

EXERCISES.

1. Take the general equation :

Equation of the line,

Ax + y + C = 0.

Equation of the point,

Att + Bv+ (7=0.
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We shall have

87

For the line co-ordinates,

A B

For the point co-ordinates,

A 3

Cor. ux + vy = denotes either a line passing through the origin or a

point at infinity.

2". Let there be given

Two points,
Two lines,

We shall have

For the equation of their line con-

nexion, called the join of the two

points,

= 0.

For the equation of their point of

intersection,

= 0.

The results and the operations which lead to them are the same in both

cases. The significations of the variables only are different since the deter-

minants will be satisfied if we put

x = Ix + mx", u = lu' -t mu",

y = ly' + my", v = lt>' + mv",

1 = I + m. 1 = I + m.

For, in fact, they are the results of eliminating /, m, 1. Between these

m
two systems of equations, we shall have, putting A. = -

,

x' + \x" u' + \u"

y + *y"

Supposing A. variable, these two

equations represent the co-ordinates

of any point of a row by means of

two special ones. It is the most

general representation of a line as

the base of a row of points. Com-

pare 11, Cor. 1.

v' +\v"

"Tnr
Supposing X variable, these two

equations represent the co-ordinates

of any ray of a pencil by means of

two special rays. It is the most

general representation of a point as

the vertex of a pencil of rays. Com-

pare 35, Cor. 2.
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x y . . it v
taking -,

- for point co-ordinates, and
,

for line co-ordinates,
2 Z W W

74. The equation (198) can be rendered homogeneous by
x y .

.king
-

,

- for point
2 Z

then (198) becomes
xu + yv + zw = 0. (202)

Cor. w - is the equation of the origin.

THREE-POINT LINE CO-ORDINATES.

75. If a, (3, y be the barycentric co-ordinates of a point with

respect to the lines of reference BC, CA, AB, and if ua + v(3

+ wy = be the equation of a line, , v, w the co-ordinates of

this line ( 53) are proportional to the perpendiculars from

A, B, C on the line. Hence we have the following defini-

tion : The absolute co-ordinates of a line are its distances S
rt ,

86,

8C from the summits A, B, C of the triangle of reference, and are

of the same or different signs according as the summits are on the

same or on different sides of the line.

76. The equations (200) and (202) express the union of the

positions of the point and the line
;
in other words, they denote

that the point is found on the line, or what is the same thing,

that the line passes through the point. And since it does not

vary, if we interchange , v, w with x, y, z we have the follow-

ing important result : In the equation which expresses the union

of the positions of a point and line, point and line co-ordinates

enter symmetrically. The point therefore enjoys in the geometry
of the line the same rdle which the line does in the geometry of

the point.

77. The equation

* .ifirY- 22 --8*
cos (7=0, (203)

\p) pq
denotes the cyclic points.

For, if a, /3, y be the angles which the lines BC, CA, AB
make with any line whatever, the equation may be written

8 \
2

/ 8 \
2

2 cos a + S sin a =0,
P 1 \ P )
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or
\ \ i \

ina )( JScos a + i sin a > 1 3 cosa - i sin a
/

that

8,

=
0,

P 1 r p q r

which proves the proposition.

EXERCISES.

1. If the coefficients in the equations of a given line be connected by a

given linear relation it passes through a given point.

2. If the vertical angle of a triangle be given in magnitude and position,

and I times the reciprocal of one side plus m times the reciprocal of the

other be given, the base passes through a given point.

3. If a variable triangle ABC have its vertices on three concurrent lines

OA, OB, OCVhich are given in position, and if two of its sides pass through
fixed points, the third side will pass through a fixed point.

For, if the reciprocals of OA, OB, OC be u, v, w the conditions of the

question give au + bv + 1 = 0, a'v + b'w +1 = 0. Hence, eliminating v

we get a linear relation between u and w, which is the equation of the point

through which the third side passes.

4. If (u, v, w), (u', v', w') be the co-ordinates of two lines, prove (lu + mu',

Iv + mv', Iw + mw') are the co-ordinates of a concurrent line.

5. If (u, v, w}, (u', v', w') be the co-ordinates of 72, prove that the line

(lu + mu', Iv + mv', Iw + mw') divides the angle between them in the ratio

of section I : m,

6. The anharmonic ratio of four lines corresponding to the values (l\, mi),

(h, mz), (k, m3 ), (k, rni} is equal to

7. If u = 0, v = 0, w in the equations of the three summits of the

triangle of reference, prove that the equations of the middle points of the

sides are
= 0, v + w = 0, w + M = 0. (205)

8. In the same case prove that the points at infinity on the sides are

M _v = 0, v -w = 0, w - M = 0. (206)

9. If M = 0, v = 0, w = be the equations of three points, prove that they
are collinear if for any system of multiples I, m, n, lu + mv + nw = 0.
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MISCELLANEOUS EXERCISES.

1. Find the equation of the join of the origin to the intersection of

f + J-1.0, |U*-La b a b

2. Prove that 2*2
-f 3xy - 2y*

- 8* 4 4y = denotes two lines at right

angles.

3. The opposite sides of a parallelogram are

x* - 5x + 6 = 0, y
2 - 13y + 40 = 0,

d the equations of its diagonals.

4. If L =
0, L' = he two parallel lines, prove that L -(- L' = is mid-

way between them.

5. Find the locus of the intersection of the diagonals of the quadrilateral

formed by the axes and the lines

? + | _ 1 = 0,
. + .-lOifX vai7-

a o \a \o

6. Find the equation of the line which joins the intersections of the

transverse and direct joins of the point-pair xz + 2gx + c=^0 with the point-

pair y
2 + Ify + c = 0.

7. Prove that the lines represented by a;
2 - xy - 6y

2 + 1x - y + 1 = are

inclined at an angle of 45.

8. If AiSi, AlBz . . . AnBn ; C\Di, Cj-Dz . . . CnDn be two systems of

segments in the same plane, such that A\B\ : dD\ = A-iB?. :

= AnBn
' CnDn = &

',

and if

the resultants of these systems have the same ratio k, and are inclined at

angle a.

The proof is easily inferred from 3.

9-14. If on the sides SC, AC, AB of a triangle there be constructed

externally three squares BCED, ACFG, ABKH, and if A', B', G' be the

centres of the squares, then

1. The middle points a, b, c of BC, CA, AB are the centres of squares

constructed externally on the sides of the triangle A'B'C'. (NEUBBHG.)
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For C'c = and perpendicular to ab, ca = and perpendicular to bS'
;
there-

fore the resultant of C'c and ca = and perpendicular to the resultant of ab

and IE'
;
that is, C'a = and perpendicular to a'. Hence is the centre of

the square described on B'C' .

2. The quadrilaterals BCGH, GFBK, HKCF are each equal to JS'C"2 .

(Ibid.}

For it is easy to see that HC = and perpendicular to BG ; therefore area

BCGH = $HC-BG = %HC2
. Again, HA = CA' V2 and AC=AB^/2;

therefore resultant of HA, A C = V2 times the resultant of C'A, AB' ;

that is, HC = V2 C'B'. Hence BCGH = B'C'2
.

3. The lines AA', BB', CC' are equal and perpendicular to the sides of

the triangle B'C'A'. (Ibid.)

4. The lines AA', BG, KF, CH are concurrent. (Ibid.)

Let V he the intersection of BG, CH, then in the cyclic quadrilateral

AVCG the angle AVG = ACG =
ir/4. In the same manner, in the quadri-

lateral BVCA' the angle BVA' = BOA' =
ir/4. Hence A V, A'V are the

bisectors of the angles HVG, B VC. The demonstration is the same for KF.

5. The quadrilaterals DEGH, FGKD, HKEF are each equal to

4A'B'C'. (Ibid.)

For DG = and parallel to 2A'B', and EH = and parallel to 1A'C'.

6. The quadrilaterals BCGK, BCFH, CAKE are each equal to ZA'B'C'.

(Ibid.)

15. Find the locus of a point, the sura of whose distances from the sides

of a given polygon is constant.

16. If a = 0, = 0, 7 = 0, 5 = be equations of the four sides of a

quadrilateral in standard form, and a, b, c, d their lengths, prove that

the line act, - bfi + cy
- dS = bisects the diagonals.

DBF. The line which bisects the diagonals of a quadrilateral is called the

Newtonian of the quadrilateral.

17. The Newtonians of the five quadrilaterals formed by five given lines

i, tiz, Us, ut, u$, taken 4 by 4, are concurrent.

For, taking i, u5 as axes of co-ordinates, the equations of MI, 2, MS,

X 'U

h |- -1 =
0, &c., the Newtonians of the quadrilateral uiuzu^u^ passes

i b\

through the points (^a\, \bz), (|2, \b\). Hence its equation is

(bi -bz)x+ (ai
- az) y - \ (a\ b\ - a2 bz)

= 0.

Adding this to the equations for the quadrilaterals uzu^uius, MS MI MI MS,

the sum vanishes identic-ally. Hence, &c.
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18. If on the three sides of the triangle of reference ABO three similar

isosceles triangles BOA', CAB', ABC' be described, prove that the lines

AA', BB', CO' are concurrent ;
that is, the triangles ABC, A'B'C' are in

perspective.

If the triangles be described externally, and if the base angles be 6, the

normal co-ordinates of the common point are I/ sin (A + 6), I/ sin (0 + 0),

l/n(C
f

+0).

19. In the same case, prove that the equation of the axis of per-

spective is a / (sin B sin C + sin A sin 20) + ft / (sin G sinA + sin B sin 26)

+ 7/ (sinA &\nB + sin C sin 20) = 0.

20. Find the equations of the perpendiculars to the sides of a triangle at

their middle points. Ans. a sin A -
ft sin B + y sin (A - B) = 0, &c.

21. Prove by the properties of a harmonic pencil that y is parallel to

o sin A + ft sin B.

22. Prove that the equations of the lines joining the middle points of the

sides of the triangle of reference are ft sin B + y sin C - a sin A = 0, &c.

23. Prove that the line at infinity is the trilinear polar of the centroid

of the triangle of reference.

24. Find the equation of the line through a'ft'y perpendicular to

In + mft H- ny = 0.

Ans. a', I m cos C n cos B,

ft', m - n cosA I cos C,
= 0. (207)

y, y', n - I cos B m cos A
25. Prove that the perpendicular to Euler's line, which bisects the dis-

tance between the circumcentre and orthocentre, is

a sin 3A + ft sin SB + y sin ZC = 0. (208)

26. Find the area of the triangle formed by the lines

x cos q y sin a x cos ft y sin ft xcoay ysiny
1 7 1 = 0, 1

1 = 0, 1
1=0.

a o a b a b

Ans. ab tan \ (o
-

ft) tan (ft
-

y) tan (7
-

a). (209)

27-29. If A', B', C' be the feet of the altitudes of the triangle ABC,
prove that the normal co-ordinates

1. Of the centroid of A'B'C', are

sin2^ cos (B - C), sin2J9 cos (C- A), sin2Cf

cos (A-B). (210)

2. Of the orthocentre of A'B'C', are

cos 1A cos (B -C}, COS2B co3(C-A), coaZC coa(A-B). (211)

3. Of the symmedian point of A'B'C',
tan A cos (B - C], tan .B cos (G - A), tan C cos (A -

B). (212)
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30. If a transversal make with the sides of the triangle ABC angles

A', B', C', all measured in the same direction, and if n be any integer,

prove that

sin nA sin nA' + sin nB sin nB' + sin nC sin nC' = 0. (M'CAY.)

(213)

31. If A, B, C be three points of a line u, and A', B', C' three points of a

line v ; show that the points of intersection of AB' and A'B, BC' and B'C,

CA' and C'A, are collinear.

32. If v be the line at infinity, show that the Newtonian of the quadri-

lateral afiyv in harycentric co-ordinates is

(0 + 7-a)/J+ (7+ a-j8)/m+ (a + -
y)jn = 0. (214)

33. Prove that the join of (1, 1, 1) and (cos (B -
C), cos (0

-
A),

cos (A -
B}) is perpendicular to a/(6

-
c) + b&j (c

-
a) -f cyj(a b) 0.

34. Show that Cotes' theorem, 54, may he extended to any number of

lines.

35. Prove that the ratio in which the join of x'y', x"y" is divided by

Ax + By + C = is - (Ax" + By" + C) : (Ax' + B'y + C).

36. If a transversal cut the sides of a polygon of n sides, the ratio of one

set of alternate segments of the sides to the product of the remaining seg-

ments is (- 1)".

37. Prove that the triangle whose sides are

a + )8 + 7/m = 0, 4 Zy + a/= 0, y+ma + 0ll =

is inscribed in the triangle of reference.

38-40. If A., /*, v denote the sines of the angles which fa + m& + ny =

makes with a, /3, 7, respectively, prove that

1. yu
2 + /

2
-f 2/j.v cos A = sin2^, &c. (215)

2. \2 sin 1A + p? sin 25 + /
2 sin 2(7 = 2 sin ^f sin 5 sin (7. (216)

3
e

. sm^/\ + sin.B/ /
u + smC'/i/ + sin^ sin.B sinC'/A J

ui' = 0. (217)

41. If A be the mean centre of the points A\, AZ, . . . An for the mul-

tiples OTI, ma, . . . mn, and if ^ r describe a right line A rBr, prove that A
describes a parallel line whose length = mrA rBr l'2,(tn). (NEUBERG.)
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42. If A be the mean centre of the points A\, Az, . . . An for the mul-

tiples mi, z, w n,
and B the mean centre of B\, 2, . .Bnfor the same

multiples, prove that AB is the resultant of segments parallel to A\Bi, AzBz

. . . AnBn multiplied respectively by mij'Stn, mzj'Sin, &c. (NEUBERG.)

43. If two polygons A\Az ... An Ai, B^Bz . . . J)nBi have the same

centre of mean distances, the resultant of the lines A\B\, AzBz . . . AnBH is

zero. (Ibid.)

44. If on the sides of a polygon A\Az . . . AnA\ triangles directly similar

A\B\Az, AzBzAz, &c., be described, the summits B\, BZ . . . Bn of these

triangles have the same centre of mean distances as the original polygon.

(LAISANT.)

45. Being given two triangles ABC, A'B'C'in the same plane to find

multiples m\, m2 ,
w 3 for which the summits of both triangles have the same

mean centre. (NETIBERG.)

46. If the summits of the triangles ABC, A'B'C' have the same mean

centre for the multiples mi, n\z, MS, and if the triangles AA'A", BB'B",
CC'C" be directly similar, the triangle A"B"C" has the same mean centre

for the same multiples. (Ibid.)

47. If on the altitudes A A', BB1

, CO' be taken portions AA\, BBi, CC\,

respectively proportional to BC, CA, AB, the centre of mean distances of

AI B\ Ci coincides with that of ABC. ^ (Ibid.)

48. If A\B\C\, AzBzCz, . . . AnBnCn be a system of triangles directly

similar, and if a, , y be the mean centres of the A summits, the B sum-

mits, and the C summits respectively for any common system of multiples,

the triangle a&y is similar to ABC. (LAISANT.)

49. If for each of the triangles formed by four lines, a line be drawn

bisecting perpendicularly the distance from circumcentre to orthocentre the

four bisecting lines are concurrent. (HERVEY.)

50. If the joins of corresponding vertices of two triangles be concurrent

the intersections of corresponding sides are collinear.

For, if the joins be the lines a = =
7, the sides of the triangle will be

7 + a + 5' = 0,

and each pair of corresponding sides intersect on 8 - 8' = 0.

DBF. A line DE cutting the sides CA, CB of the triangle of reference in

the points D, E so that the triangle CDE is inversely similar to CBA is called

an anti-parallel to the base AB.
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51. Find the condition that Aa + ju/3 + vy = may be anti-parallel to. 7.

Ans. I sin A - m sin B - n sin (A - B) = 0. (218) ,

52. Find the equation of the line through the symmedian point of a tri-

angle anti-parallel to the base.

Ans. a cot A sin B + ft cot sin A = 7. (219)

53. The summits B, G of a triangle move on a fixed line, the summit A
is fixed; prove that the locus of the trilinear pole of a given line with

respect to the triangle ABC is a right line. (HERMES, Crelle's Journal,,

vol. 56, page 207.)

54. Find the co-ordinates of the points anti-complementary to the four

points a, I, c; a,b,c; a, b, c; a, b, c.

Ans. cot .4/2, cot^/2, cot (7/2 ;

- cotA/2, tan .3/2, tan (7/2 ;. tan A]2,
- cot 5/2, tan C/2 ;

tan A/2, tan B/2, -cot 7/2. These are called NAGEL'S-

points, and are denoted by v, va> vb, Vc, respectively. Their isotomic conju-

gates are called the GERGONNE points, and are denoted by r, r
, Tj, rcr

respectively.

55. The diagonal triangle of the quadrangle whose summits are the Nagel

points is the anti-complementary of ABC.

56. The triangle ABC is in perspective with each of the four triangles

formed by the Gergonne points, the centres of perspective being the Nagel

points. It is also in perspective with each of the triangles formed by the

Nagel points, the centres of perspective being the Gergonne points.



CHAPTER III.

THE CIRCLE.

SECTION I. CAKTESIAN CO-ORDINATES.

78. Tojlnd the general equation of a circle.

Let (ab) be the centre, (xy) any

point P in the circumference
; then,

if the radius OP be denoted by r,

we have (Art. 1),

(x-ay + (y-b? = r*; (220)

or

x* + y
2 - lax - lly + a2 + tf-r2 = 0,

which is the required equation.

The following observations on this equation are very impor-

tant :

1. It is of the second degree. 2. The coefficients of x1 and

y* are equal. 3. It does not contain the product xy. Hence

we have the following general theorem : Every equation of the

second degree which does not contain the product of the variables,

and in which the coefficients of their second powers are equal, repre-

sents a circle.

The following are special cases :

1. If the centre be origin, the equation is x1 + y
2 = rz

,
which

is the standard form. (221)

2. If the origin be on the circumference, x1 + y
2 - 2ax

-
2by = 0. (222)
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3. If the axis of x pass through the centre, and the origin

be on the circumference, xz + y
1 = 2ax. (223)

4. If the axis of y pass through the centre, and the origin

be on the circumference, a? + y
2 = 2by. (224)

Observation. The criterion that the product xy must not

be contained in the equation is true only when the axes are

rectangular ;
for if they were oblique the equation would

( 5) be

(x
- a? + (y

- Vf + 2 (x
-

a] (y
-

) cos w = r*. (225)

79. If the equation of a circle be given, we can construct it,

For let the equation be ax* + ay
2 + Igx + 2fy + c = 0. Dividing

by 0, and completing squares, we get

Comparing this with the fundamental equation (220), we see

that the co-ordinates of the centre are

- 9
-,

-f-
: and that the radius is

^ 9* + f*

a a a

Hence the circle can be described. "We have the following

cases to consider : if g
1 +/2 be greater than ac, the circle is real,

and can be constructed
;

if g
2 +f2 be equal to ac, the radius is

zero, and the circle is indefinitely small, that is, it is a point ;
if

g
z +f1 be less than ac, the radius is imaginary : there is no real

circle corresponding to the equation ;
in otherjwords, ax* + ay*

+ k

2gx + 2fy + c = represents in this case an imaginary circle.

Cor. Since the co-ordinates of the centre of the circle

ax* + ay
1 + 2gx + 2fy + c = do not contain c, it follows that

two circles whose equations differ only in their absolute terms are

concentric.
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80. GEOMETKICAL REPRESENTATION OF THE POWER OF A POINT

WITH KESPECT TO A ClRCLE.

The power of a point with respect to a circle
( 27) is positive,

zero, or negative, according as the point is outside, on, or inside the

circumference.

be the circle x'y' on external

point ;
then the power of x'y'

with respect to the circle is

(x'-ay + W-by-r3
;

that is
( 5) OP2 - r2

,
or t

2
,
since

OOP is a right angle. Hence the

power of an external point with re-

spect to a circle is equal to the square of the tangent drawn from

that point to the circle.

2. When the point is on the circle its power is evidently

zero.

3. Let x'y' be an internal point ;
then

denoting OP by 8, the power of OP with

respect to the circle is

S* - r2
,
or - (r + 8) (r

-
S) ;

that is = - AP . P, a negative quan-

tity.

Cor. If for shortness the equation of a circle be denoted

by S = 0, the power of any point x'y' with respect to S will

be denoted by S', for this is the result of substituting the

co-ordinates x'y' in place of xy.

EXERCISES.

1 . If the equation of a line be added to the equation of a circle, the sum is

the equation of a circle.

2 . The sumofthe equations ofanynumber of circles is the equation of a circle.

3. Construct the circles

I
8

. *2 + y
2 - 4* - 8y = 16 ; 2. Zx* + 3y

2 + 7* + 9y + 1 = 0.
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4. Find the equation of a circle, passing through the point (2, 4) through

the origin, and having its centre on the axis of x.

5. Find the locus of the vertex of a triangle, being given the base and

the sum of the squares of the sides.

6. Find the locus of the vertex of a triangle, being given the base and

m squares of one side + n squares of the other.

7. If Si = 0, Sz = 0, 83 = 0, &c., be the equations of any number

of circles, prove that the centre of ISi + mSz + nSa + &c. = is the

mean centre of the centres of Si, Sz, 83, &c., for the system of multiples

I, in, n, &c.

8. Find the equation of the circle whose diameter is the join of the

points x'y, x"y".
Am. (x-x'}(x-x") + (y-y')(y-y") = 0. (227)

9. Given the base of a triangle and the vertical angle, prove that the

locus of its vertex is the circle S + L cot (7 = where S =
0, denotes the

circle described on the base as diameter, and L = the equation of the base.

(228)

10. Given the base of a triangle and the vertical angle, prove that the

locus of the orthocentre is the circle

tf-icot 0=0. (229)

11. Find the locus of a point at which two given circles subtend equal

12. If a line of given length slide between two fixed lines, the locus of

the centre of instantaneous rotation is a circle.

13. Given the base of a triangle and the ratio of the tangent of the ver-

tical angle of the tangent of one of the base angles, prove that the locus of

the vertex, is a circle.

14. If the sum of the squares of the distances of a point from the sides

of an equilateral triangle or of a square be given, the locus of the point is

a circle.

15. If the sum of the squares of the distances from a variable point to

any number of fixed points, each multiplied by a given constant, be given,

the locus of the point is a circle.

16. If the base c of a triangle be given both in magnitude and position,

and ab sin (G
-

a), where o is a given angle, be given in magnitude, the

locus of the vertex is a circle.
(

H2
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81. The equations of a line and a circle leing given, it is

required to find the equation of the circle whose diameter is the

intercept which the latter makes on the former.

Let the equations be

x co&a + y sina-jp = 0, (1) xz + y*
- r2 = 0. (2)

Eliminating y and x in succession, we get

3? - 2px cos a + pz - r2 sin
2a =

; (3)

y
2 - 2py sin a + p

z - r2 cos2a = 0. (4)

Equation (3), being a quadratic in ar, denotes ( 37) two

lines parallel to the axis of y through the points of intersection

of (1) and (2). Similarly, equation (4) denotes two lines

through the same points parallel to the axis of x. Hence, by

addition, we get

x* + y*
- 1p (x cos a + y sin a -

p]
- r* = 0, (230)

which is evidently a circle passing through the four points in

which the pair of lines (3) intersect the pair (4). Hence it

has for diameter the intercept made by (2) on (1). See 30,

Cor. 2.

EXERCISES.

1. Find the equation of the circle whose diameter is the intercept which

the circle x1 + y
1 - 65 = makes on 3#4 y - 25 = 0.

Ans. x* + y*
- 15z - 5y + 60.

2. Find the condition that the intercept which #2 + y
2 r- = makes on

x cos a + ysino p = subtends a right angle at x'y'.

Ans. The circle (230) must pass through x'y . Hence the required

condition is x"1 + y'
z

1p (x' cos o -f- y' sin a - p)
- r1 = 0. (231)

3. Find the condition that the intercept which x cos a + y sin a p =

makes on x2 + y- + Igx + Ify + c = subtends a right angle at the origin.

Eliminating x and y in succession between these equations, and adding,

we get a circle whose diameter is the intercept ;
and by the given condi-

tion this must pass through the origin ; therefore the absolute term must

vanish. Hence
Ip

1 + 2p (g cos o -t-/ sin o) + c = 0. (232)
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4. If a variable chord of a circle subtend a right angle at a fixed point

x'y', find the locus of the middle point of the chord.

The middle point of the chord is evidently the centre of the circle (230)

which has the chord for diameter. If, therefore, XT "be the co-ordinates of

the middle point, we have

X = p cos a, Y=>p sino; therefore Z2 + Y*=p'2 ;

and substituting in the equation (231), we get

(X-x')* + (Y-y')* + X* + Y*-r* = 0. (233)

82. To find the equation of the tangent to a given circle

(x
-

a)
2 + (y

-
b)

z = r* at a given
\Q(*y)

point (x'y').

First method. Let be the

centre, Q any point xy in the

tangent. Join OQ-, then, since

the points (xy}, (ab) subtend a

right angle at (x'y'), we have

equation (14), (x'
-

x}(x'
-

a)
-

* (y
1 ~

y)(y'
~~

^)
= o

;
ais

>
since

the point x'y' is on the circle, we have

(x
1

a)
2 + (y' b)

2 = r2 .

Hence, by subtraction,

(x
-
a)(x'

- a) + (y- b)(y'
-

1}
= r\ (234)

which is the required equation.

Cor. If the equation of the circle be given in the standard

form xz 4 y
2 = rz

,
the equation of the tangent is

xaf +'.yy
f = r*. (235)

Second method. Taking the standard form of the equation of

the circle, if x'y', x"y" be two points on its circumference, then

the equations of the circle described on the join of x'y', x"y" as

diameter is (x
-

x')(x
-
x") + (y

-
y'}(y

-
y"} = 0, equation (14) ;

and, subtracting this from the equation of the circle, we get

(236)
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which
( 30, Cor. 2) is the equation of the secant through the

two points x'y', x"y". Now suppose the points x'y
1

, x"y" to

become consecutive, the secant becomes a tangent, and this

equation (236) reduces to

xx' + yy'
- rz = 0.

Third method. The polar co-ordinates of x'y', x"y" are

(r cos 0', r sin 6'} ; (r cos 6", r sin 0") ;
and the equation of the

join of these points is
( 31, Ex. 3),

* cos (0' + 0") + y sin (0' + 0") = r cos (0'
-
0") ;

and if the points be consecutive, this reduces to

x cos 0' + y sin 0' = r, (237)

which is another form of the equation of the tangent.

83. From any point (hk) can be drawn to a circle two tangents,

which are either real and distinct, coincident, or imaginary.

For if x'y' be the point of contact of a tangent from (hK) we

get, substituting hk for xy in (235), hx' + ky'
- r2

. Also, since

x'y' is on the circle, xn + y'
z = r*. Eliminating y', we get

(h
z + #) x'* - 2r2 &r' + rl - k*r2 = 0, (i.)

the discriminant of which is r2 2
(A

2 + kz - r2

) ;
and according

as this is positive, zero, or negative, the equation (i.) will

be the product of two real and unequal, two equal, or two

imaginary factors. Hence the proposition is proved.

84. If we omit the accents in equation (i.), we get

(A
2 + 2

)
x* - 2r*hx + r*-kz rz = 0, (n.)

which represents two lines parallel to the axis of y, passing

through the points of contact of tangents from hk to the circle.

In like manner,

(h* + &2

) y
2 - 2rz

ky + r4 - k*r* = 4 (in.)

represents two parallels to the axis of x passing through the

same points. Hence, by addition, we get

(W + tf}(x< + y
z - r2

)
- 2r2

(hx + ky
- r

2

)
= 0, (238)
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which is the equation of the circle whose diameter is the chord of

contact of tangents from hk to xz + y
z -rz = 0.

Cor. If we multiply the equation #* + y
z - rz = by hz + A2

,

and subtract (238) from it, we get hx + Tcy
- rz =

0, which is the

common chord of the two circles ( 30, Cor. 2). Hence

hx + ly
- r* = (239)

is the equation of the chord of contact of tangents from

This can be shown otherwise. From the demonstration, 83,

we have hx' + Icy'
- rz = 0. In like manner, if x"y" be the

second point of contact, we have hx" + Jcy" rz = 0. Hence the

line hx -f ky
- rz = is satisfied by the co-ordinates of each point

of contact.

85. To find the equation of the pair of tangents from (hie] to the

circle. On either of the tangents from (M) to the circle take a

point (xy} ;
then twice the area of the triangle formed by the

origin and the two points xy, hk, is hx Icy, and twice the same

area is equal to the distance between the points multiplied by
the radius of the circle. Hence

or, reducing,

(y* + y
i _ rz) (h

z + kz - rz
]
= (hx + Jcy

- y2

)
2

. (240)

86. If (x
- a? + (y

-
b}

2 = rz
, (x

- aj + (y
- IJ = r'

z be the

equations of two circles, it is required to find the equations of the

chords of contact of common tangents.

Let x'y' be the point of contact on the first circle, then

(x
-

a] (x
1

-a] + (y
-

b} (y'
-

b)
- rz = is the tangent ;

and

since this touches the second circle, the perpendicular on it from

the centre of the second circle must be = r' . Hence, remem-

bering that \/(x'
- of + (y'

- Vf =
r, we get

(a/
-

a] (a'
-

a} + (y
1 -

V) (V
-

b}
- rz

+ rr' = 0,

the choice of sign depending on whether the common tangent is
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direct or transverse. Hence the chords of contact are on

1st circle,

(x
- a ) (a'

- a
) + (y

- b ) (V
- I

)
- r2 + rr' =

; (241)

2nd circle,

(
x -

') (
a -

a'} + (y
-
V} (b

-
b'}

- /2
? rr' = 0. (242)

EXERCISES.

1. Find the equation, and the length of the common chord, of the

two circles

(*
-

)

2 + (y
- by = r\ (x

- V? + (y
-

a)*
= r2 .

2. Find the conditions that the lines ax by = may touch the circle

(*
-

a)~ + (y- i)
2 = r2 .

3. If tangents be drawn to xz + y
2 - r2 = from hk, the area of the

triangle formed by the tangents and chord of contact is

(*+ *-r)l ,

A2 + *2

4. Two circles whose radii are r, r' intersect at an angle ; find the length

of their common chord.

6. Find the equation of the diameter of x2 + y*
- 6x - 1y + 8 = passing

through the origin.

6. Prove that the tangent to x2 + y
2 + Igx + 2fy = at the origin is

9* +fy = o.

7. Prove that if tangents be drawn from the origin to xz + y
2 + Igx

+ 2fy + c = 0, the chord of contact is gx +fy + e = 0.

8. If the chord of contact of tangents from a variable point hk subtend a

right angle at a fixed point x'y', the locus of hk is the circle

(x* + y
2
) (a/* + y'

2 - r2
)
- 2r* (xx' + yy'

- r2
)
= 0. (244)

9. If It denote the radius of the circle in Ex. 8, 8 the distance of its

centre from the origin, prove

1 1 _
(& + $)** (It -$)*~^'

10. PA, PB are two tangents to a circle whose centre is ; Q any

point in AP\ QR a perpendicular on the chord of contact AS
; prove

AP. AQ = QR . OP, and thence infer the equation of the pair of tangents

from It.

87. DBF. I. If be the centre of the circle xz + y
2 - r* = 0,
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P, Q two points collinear ivith 0, such that the rectangle OP . OQ
= r2

;
P and Q are called inverse points with respect to the circle.

DBF. II. Two lines are inverse to each other with respect to a

circle if the inverse of each point of one lie upon the other.

DEF. III. A perpendicular at either of two inverse points to the

linejoining it to the centre is called the polar of the other. '-"
.

88. The co-ordinates x'y' of a point P being given, it i&

required to find the co-ordinates of the point inverse to it

with respect to the circle 3? + y
z - rz = 0.

Using polar co-ordinates, we] have x' = p' cos 6', y =
p' sin 0',

x" = p" cos 0', y" = p" sin 6'
;
and by the condition of inversion,

,<" = ,'. Hence *.-.!.-+-
x1

p' p'
2

#'
2 + y'

Hence *" = -*-. (246)

rV
In like manner y" = y

. (247)x z + y
z

89. The polar of the point x'y' is xx' + yy'
- r2 = 0.

For the equation of the perpendicular through x" y" to the

join of x'y' to the centre is, 34, Cor. 1,

and substituting the values (246), (247) for x"y", we get

xx' + yy'
- r* = 0. (248)

Cor. 1 . The polar of any point on the circumference of the

circle is the tangent at that point.

Cor. 2. The polar of any external point is the chord of con-

tact of tangents drawn from that point.

EXERCISES.
1 . Find the equation of the inverse of the line Ax -t- By +(7=0 with

respect to x2 + y
z

r'
2 = 0. Substituting for x, y the co-ordinates (246)

(247), and omitting accents we get

C (x
1- + y*) + Ar-x + Br*y = 0. (249)

2. Find the inverse of the circle #2 + y
2 + 2gx -\-2fy + c= 0, with respect

to the circle x1 + y
z rz = 0.

Ana. The circle c (x- + y-) + tyr* x + 2fr* y + r* = 0. (250)
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3. Find the equation to the pair of tangents from the origin to

x2 + y
2

4- 2yx 4- 2/y + c = 0.

If the line y mx be a tangent to x* + y
2

4- 2ax 4- 2/y + c = 0, substituting

u; for y, the resulting equation, viz. x- (1 4- MJ") + '2(g + mf) x + c = 0, must

have equal roots. Hence (1 + t
2
)
e = (g 4- m/)

2
; hut m = -

; therefore

(* + y) = (y*+./y), (261)

which is the pair of tangents required.

We get the same pair of tangents for the inverse circle e (#
2 + y

2
) + Igr^x

+ 2fr*y + r4 = 0. Hence the pair of direct common tangents drawn to a

circle and to its inverse passes through the centre of inversion.

4. Find the length of the direct common tangent drawn to the circles

a? + y* + 20X + 2fy + c = 0, x1 + y- + Ig'x + 2f'y 4- c' = 0.

Ana. If It,
'

denote the radii of the circles, the length of their direct

common tangent

= Vc 4- c' - "Igg'
- Iff + XJt'. (252)

5. The ratio of the square of the common tangent of two circles to the

rectangle contained by their radii remains unaltered by inversion.

6. If A, B be any two points, A', B'
,

their inverses with respect to

x* 4- y
2 y2 = Q ; prove that if p, p' be the perpendicular distances of the

origin from AB, A'B' respectively, p : p' : : AB, A'B' .

7. If two points A, B be so related that the polar of A passes through B,

the polar of B passes through A. For if the co-ordinates of A be (')
and of B (bb'), the polar of A is ax 4- a'y = r2

,
and the condition that this

should pass through B is aa 4- bb' = r2
, which, being symmetrical with

respect to the co-ordinates of A and B, is also the condition that the polar

of B should pass through A.

DBF. Two points so related that the polar of either passes through tht

other are called conjugate points, and their polars conjugate lines.

8. If a variable point moves along a fixed line, its polar turns round a

fixed point.

9. The join of any two points is the polar of the point of intersection of

their polars.

10. Two triangles which are such that the angular points of one are the

poles of the sides of the other are in perspective.

11. The anharmonic ratio of four collinear points is equal to the anhar-

monic ratio of the pencil formed by their four polars. For, let x'y', x" y" be

two points, and P, P" their polars : then if the join of x'y', x" y" be divided

in two points in the ratios k : 1, k' : 1, the anharmonic ratio of the four

points is k -f k'
; and since the polars of the point of division are kP" 4- P' = 0,

k'P" 4- f = 0, the anharmonic ratio of their four polars is k -f- k'.
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90. To find the angle of intersection of two given circles.

DBF. The angle between the tangents to any two curves at a

point of intersection is called the angle of intersection of the curves

at that point.

Let r, r' be the radii of the given circles, S the distance be-

tween their centres, < their angle of intersection
; then, since

radii drawn to the point of intersection are perpendicular to the

tangents at that point, the angle between the radii is <.

Hence S2 = r2 + r'
2 - 2rr' cos <.

Now, if the circles be

x* + f + 2gx + 2ft/ + c =
0,

and x* + y* + 2g'x + 2f'y+ c' = 0,

we have

S2 = (9
~ 9J + (/-/)', r2 = / +/2 -

e, r'* = /2 +/2 - c'.

Hence, by substitution, we get

c + c' + 2rr' cos <
-

2gg'
-
2/' =

0, (253)

which determines the angle <.

Cor. 1. If the circles cut orthogonally,

2gg' + 2f -c-c' = Q. (254)

Cor. 2. If the circles touch,

c' 2rr' -
2gg'

-
2/' + c =

; (255)

the choice 'of sign being determined by the species of contact.

Cor. 3. If a circle S cut three circles S', S", S'" orthogonally,

it cuts orthogonally any circle \S' + p.8" + vS'" expressed linearly

in terms of 8', S", S'".

This is proved by writing the equations S', &c., in full, and

applying the condition (254).

91. DEF. The mutual poiver of two circles is the square of the

distance between their centres minus the sum of the squares of their

radii.

If the circles be

y* + 2y2x + 2fzy + c2 = 0,
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and the mutual power of Si, S2 be denoted by irlz , we easily

find 7r12 = c
l + c2

-
*2gigz

-
2/,/2 . (256)

Cor. 1 . If the radii of the circles be r
1? r2 ,

and < their angle

of intersection, TTIZ = - 2/VuCOS <f>. (257)

Cor. 2. The mutual power of Si = and x* + y* <= 0, which

may be denoted by TTOI ,
is c^.

92. If Sz become infinity large, that is, open out into a line,

and denoting the infinite radius by R, and the perpendicular

on it from the centre of S l by p, we have the mutual power
= - 2pR. Similarly, if Sl} S2 become lines, intersecting at an

angle <, the mutual power = - 2R? cos
<f>.

In all the applications

of mutual power that will occur in this treatise, the results

will be inferred from a symmetrical determinant (see 98),

from which the factors -2R, - 2R2
may be omitted. Hence

we may define the mutual power of a line and a circle as the

perpendicular on the line from the centre of the circle, and

the mutual power of two lines as the cosine of their included

angle.

Cor. 1. The mutual power of any circle and the line at

infinity is unity, and of any line and the line at infinity is zero.

Cor. 2. If two circles cut orthogonally, their mutual power
is zero.

Cor. 3. If two circles touch, their mutual power is 2r1r3 ,

the choice of sign depending on the nature of the contact.

93. To find the equation of a circle, cutting three given circles

Sl
= & + y

1 + 2gx + 2fLy + Ci = 0, fyc., at given angles < < 2 , <f>3 .

Let S = xz + y^ + Igx -\- 2fy + c be the required circle. Now, if

TTO t be the mutual power of S, S
l}

the equation (253) may be

written e\
- TTO :

-
2ggly

-
Iffi, + c = 0. Hence, eliminating

g,f, c between the three equations of this form, and x* + y*

_ ~ _. i
*> y> *>

S"

^ I'
=0. (258)

2 ^0 2 j ff% j J2 j J

C3 TO 3, g$, fs,
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If this determinant expanded be written in the form

A (a? + y
2

) + 2 Gx + 2Fy + C =
0,

and r denote the radius of the circle, which it represents, we
have A2r* = G* + F2 - AC; but the quantities , F, C each

contain r in the first degree. Hence we have a quadratic for

determining r, either root of which, substituted in (258), will

give a circle, cutting Si, S2 ,
S3 at the given angles.

Cor. 1. The equation of a circle, cutting- S^ S2 ,
S3 ortho-

gonally, is

^ + y
z
,

-
x, -y ,

c\, 9\, fi,

^z, ffz, Jz,

1,

1,

1,

1

= 0. (259)

Cor. 2. The equations of the eight circles touching Si, S2 ,
S3

are

-y,

2rr,,

c3 2rr3 ,

= 0. (260)

94. If four circles be cut at given angles ^ <j>2 , <f>3 ,
<

fifth, we have four equations of the form : Ci TTOI 2gg

+ c = 0. Hence, eliminating g, f, c, we get the equation

by a

fit

/z,

fa,

ffl, fl,

fz,

"""OS,

= 0. (261)

95. If the angles fa, &c., be right, the second determinant

(261) vanishes, and the first equated to zero is the condition
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that one circle may be cut orthogonally by four given circles,

vz.

02,

04,

ffil

/4,

= 0. (262)

Now, since cl denotes the square of the tangent from the

origin to 8^ ( 80), and its minor in this determinant denotes

twice the area of the triangle formed by the centres of the

circles Sa ,
S3 , 8^, we have the following theorem : If A, B,

C, D be the centres of four co-orthogonal circles, ti, tz ,
t3 , t

tangents drawn to these circles from any arbitrary point, (ABC]
the area of the triangle, whose summits are A, JB, C, Sfc. ; then

t? (BCD] - tf ( CDA] + t3
*

(DAB] - t? (ABC] = 0. (263)

96. If xy, x$i, x2y2 ,
xzy3 be four concyclic points, they may

be regarded as infinitely small circles, cutting a given circle

orthogonally. Hence, substituting in (262), x* + y* for
<?j,

and

x, y for -ff l -/!, &c., we get

+ y

y, if

l

(264)

and the point xy, being supposed variable, we have the equation of

a circle passing through three given points. The same result

could be obtained from (260) by supposing 8^ 82 ,
83 to be the

point circles (x
-
xtf + (y- yi)

a =
0, &c. It may also be shown

as follows :

The determinant (264) evidently represents a circle, for the

coefficients of x* and y
z are equal, and the circle passes through
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the given points ;
for if in the determinant we substitute xit fa

for xy, it will have two rows alike.

97. If =0 be the equation of any arbitrary circle; S^ S2 ,
Ss

the powers of the points xvy^ xzyz ,
x3y3 with respect to it, then the

determinant

S, x, y, 1,

$15 #i> yi) 1,

1,#2) 2/2)

= 0, (265)

will denote a circle through x^y^ #2y2 )
x3y3 .

FEOBENITJS'S THEOKEM.

98. If Si, S2 ,
S3 ,

Sit S5 ;
$6 ,

^7 ,

of five circles, then the determinant

""2 7,

""57)

""28)

""38)

""48)

""58,
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de VEcole Normals, 2nd series, tome i., p. 323
;
Lucas Nouvelle,

Correspondence, tome iv., pp. 169-175, and 200-204. It was re-

discovered by 11. Lachlan, B.A. (see Philosophical Transactions,

vol. 177).

99. If the angle of intersection of two circles Sa ,
S be de-

noted by a/?, we get, by means of 91, Cor. 1, from (266) by

supposing the second system of circles to coincide with the first

for any system of five circles on a plane

1, cos 12, cos 13> cos 14, cos 15

cos 21, 1,

cos 31, cos 32,

cos 23,

1,

cos 41, cos 42, cos 43,

cos 24, cos 25

cos 34, cos 35

cos 45

= 0. (268)

cos 51, cos 52, cos 53, cos 54,

Cor. 1. The condition that four circles should cut a fifth

orthogonally is

cos 13, cos 141, cos 12,

cos 21, 1, cos 23, cos 24

cos 31, cos 32, 1, cos 34

= 0. (269)

cos 41, cos 42, cos 43, 1

Cor. 2. The condition that four circles should be tangential

to a fifth is

0, sin
2
* 12, sin2*l3, sin2* 14

sin2* 21, 0, sin2
* 23, sin2* 24

sin
2
* 31, sin2* 32, 0, sin2* 34

sin2* 41, sin2* 42, sin2* 43,

(270)

For, if the circle $5 touch each of the circles Si, S2 ,
S3 ,

St ,

<x>s 15, cos 25, *&c., become each equal to unity, and subtracting
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each of the four first columns from the last in (269) we get

(270).

100. If tiz denote the common tangent to the circles Si, 8Z ,

we easily get sin2
^ 12 =

tfi8
2

/*"i*V Hence in the determinant

(270) the sines of half the angles of intersection of the circles

Si, S2 ,
S3 , 84, may be replaced by their common tangents, and

denoting for shortness by 12 the common tangent of Si, 82 ,
the

condition is

0, 12
2
, 13, 14

21
2

, 0, 23, 24
a

31, 32, 0,

42 , 43%

= 0. (271)

Which expanded is equal to the product of the four factors

12.34 23. U 3l. 24. (272)

EXERCISES.

1. If Si, Sz, 83 be any three circles, find the condition that the radius of

+ foSz + AS/SB may be zero.

IfR be the radius of \\S\ + XzSz + AsSa, we have

Hence, if

= 0, = 0.

If this be expanded, the coefficient of Ai2 is gi
z
+/i2

Ci, that is ri
2

, and

the coefficient of \\\z is 1g\gz + 2/j/z c\ GZ, that is, viz. Hence

the required condition is

AVi2 + AVz2 + AVa2 - iriz\i\z - JrasAjAa - ir3iA3Ai = 0. (273)

2. If two circles, Si, Sz be inverted into two others, 'i, S'z, then remains

unaltered by inversion :

1. The angle of intersection.

2. The ratio of the square of their common tangent to the rectangle con-

tained by their radii.
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3. The ratio of the square of their mutual power to the product of the

powers of the origin with respect to the circles.

3. Being given four points in a plane, the area of the triangle formed by

any three of them multiplied by the power of the fourth with respect to the

circumcircle of that triangle gives a constant product. (STAXJDT.)

4. If Si, 82, 83, Si ; 5, S6, ST, 83 be two systems of four circles, prove

1 1 1

T25,

T35,

= 0. (274)

(LACKLAND.)

5. In the same case prove

2 3 4* 2 3 6 7

(Ibid.)

The Exercises 4, 5 give a very large number of results by making special

hypotheses for the circles ; for example, supposing either system to be cut

orthogonally by the same circle, or to reduce to points or lines, &c.

6. If a circle radius p cut the circles Si, 82, 83 at angles <f>i, fa, <f>3 , prove

o,
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102. One of the circles of a coaxal system is infinitely large, and

two infinitely small. For, let

then

S-kS'=(l-k}(x*+y*) + 2(g-kg'}x + 2(f-kf')y + c-kc'=Q (277)

is the general circle of the system. Now, in the special case

where k - 1
,
this circle reduces to

S-S' = 2(<j- Sf')x+2(f-f)y + c-c'=0, (278)

which represents a line that is an infinitely large circle. This

line is called the BA.DICAL AXIS of the coaxal system.

Again, if R denote the radius of 8 -
kS', we have

Now, if 8 - kS' = reduce to a point circle, R =
;

hence (g
- kgj + (J- kf')

z
-(l-k)(c- Jed]

= 0,

or (ff
z
+f*-c) + k(C+c'-2gcr'-2ff)+k*(g'*+f*-c') = 0, (279)

which is a quadratic in Jc. If the roots be klt ^j, the circles

8 -
hi 8' = 0, 8 - k2 S' = reduce to points. These are called

the limiting points of the system. Hence the proposition is

proved.
Cor. The parameter k is equal to the ratio in which the centre

of 8 - kS' = divides the distance between the centres of the

circles S' = 0, 8=0.

103. The limiting points of the coaxal system 8 - kS' = are

real when the circles S, Sr
do not intersect, and imaginary when

they do.

The roots of the equation (279) will be real if

4 (g
z
+f*

- c
] (g'

z
+f'

2 -
c'} be less than (c + c' - 2gg'

-
2ffJ,

or if 4r2
r'

2 be less than (c + c' - 2gg'
-

2ff')*

but r2 + r'
2 =f +f* - c + g

n+/2 - c
r
.

Hence the roots will be real if

(r + r'}
z be greater than 82

,

or (r
-

r')
z be less than S2

,

i2
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where 8 is the distance between the centres of 8, S', that is,

the roots are real when the circles do not intersect. Again, if

< be the angle of intersection of S, ', the equation (279) may
be written

r2 - Zkrr
1
cos + V2 =

;

therefore kr'= r (cos < sin < /- 1). (280)

Hence the values of k are imaginary when <f>
is real, and

the proposition is proved.

104. A coaxal system may be expressed linearly in terms of any

two circles of the system S - KS = 0.

For, let 8-l8'm(l-l)<r, S- mS' m (1
- m) </

;
then S, S'

can be expressed in terms of <r and o-'
;
and if I, m be given,

<r, o-' are given. Hence S - kS' can be expressed in terms of

two given circles o-, <r' : k will be the only variable parameter,

and it will be in the first degree.

Cor. 1. If o-, o-' be the limiting points, and k a variable

parameter, then the coaxal system is represented by the equation

o- -M = 0. (281)

Cor. 2. Similarly, if L = denote the radical axis, any

circle of the system may be expressed in the form S - kL = 0.

Thus a? + y
z d* - 2kx = denotes a coaxal system, having

x = for the radical axis, and real or imaginary limiting points,

according as the sign of d"
1
is plus or minus.

EXERCISES.

1. The radical axes of any three circles are concurrent.

For if S, S', S" be the circles, then
( 102) the radical axes are S- &= 0,

S' - S" =
0, S" - S = 0, which, added, vanish identically.

2. Tangents from any point on a fixed circle of a coaxal system to two

other fixed circles of the system are in a given ratio.

For let tangents be drawn from any point P of the circle S - && =

to the circles S, S'
; then denoting these tangents by t, t', we have, since

the power of P with respect to S - k*S' is zero,

Hence t : t' : : k : 1, that is, in a given ratio.
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The following are special cases :

1. Tangents from any point in the radical axis to all the circles of

the system are equal to one another. For in this case k = 1.

Hence t = t'.

2. The distancesfrom any point of a fixed circle of the system to the

two limiting points are in a given ratio.

3. The limiting points are harmonic conjugates to the extremities col-

linear with them of the diameter of any circle of the system ; because

the ratio of the distances of the limiting points from one extremity is

equal to the ratio of their distances from the other extremity of the

diameter.

4. The limiting points are inverse points with respect to each circle.

5. The distance of any point in a given circle of a coaxal system from

the radical axis is proportional to the square of the tangent from the same

point to any other given circle of the system.

This follows from the equation S kL = 0.

6. Any two circles and their circle of inversion are coaxal.

For the inverse of xz + y
z + 2gx + 2fy + c = 0, with respect to xz + y

z

- r2 = 0, is c (x
z + y

z
) + Igr^x + 2fr

z
y + r4 = ;

and the first, multiplied

hy rz and subtracted from the last, gives (c rz)(x
z + y

z r2
)
= 0.

7. The polars of any point with respect to the circles of a coaxal system

are concurrent.

For if P, P1
be the polars of the point with respect to 8, S', its polar

with respect to 8 - kS' is P kP' = 0, a line passing through the inter-

section of P, P'.

DBF. The RADICAL CENTRE of three given circles is the point of concur-

rence of their radical axes.

8. The radical centre of three given circles is the centre of a circle, cutt

ting them orthogonally.

9. The inverse of a coaxal system is a coaxal system.

For the inverse of S - kS' is of the same form.

10. The inverse of a system of concurrent lines is a coaxal system of

circles.

11. The inverse of a system of concentric circles is a coaxal system, of

which the centre of inversion is one of the limiting points.

For the inverse of (x
-

a)
z + (y-b)

z -Sz = with respect to x*+ y
z - r2 =

is S-RZS' = 0, where S = (a
z + P)(x

z+ y
z
)
- Za^x-ZWy + r*, S'=xz

Hence S = 0, S' = are point circles.
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12. A coaxal system having real limiting points is the inverse of a con-

centric system, and a system having imaginary limiting points the inverse

of a pencil of lines.

13. If a variable circle cut two given circles of a coaxal system at given

angles, it cuts every circle of the system at a constant angle. This may
he seen at once by inversion : or without inversion, as follows : If S = *2

4- y
2 + fyx 4 2/y 4 e = cuts S' a xz + y

2
4- Ig'x + 2/y 4 c' = and

S" = xz 4 y
2

4- 2g"x 4 2/"y 4- c" = at angles $>', <f>", it cuts the circle

& - kS" = at the angle

. (r'cos4>'-r"cosd>")

"""'I 3(1 -A) )'
(282)

where H denotes the radius of S' - fcS" = 0.

14. The radical axes of the circles of a coaxal system and a circle which
is not one of the system are concurrent.

15. The circles xz + y
2 - 2hx 4 b* = 0, a;

2
4- y

z -
2/ty

- P = cut

orthogonally.

DBF. The two points which divide the distances between the centres of two

circles internally and externally in the ratio of their radii are called the

centres of similitude of the circles.

Thus if * 4- y
2 4 fyx 4 2/y 4- e = 0, x* + y

2
4- tyx + 2/'y 4- e' = he

two circles, their centres of similitude are

internal, the point
r + r' r + r'

(283)

and external, ("^"f ,

~ (/V"^
j

( r r r - r' }

16. If S, S' be two circles whose radii are r, r', prove that their internal
O Of

centre of similitude is the centre of 4- -7 = 0, and the external one, the
r r

1

8 S'
centre of 7 = 0.

r r1

o o/

17. If S, S' be two circles,
- = will invert one into the other:
r r

in what respect do these inversions differ ?
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18. If $, S' be two circles, the circle described on the distance between
O O'

their centres of similitude as diameter is = 0. (284)

This is called their circle of similitude.

19. Given any three circles, taking them two by two they have three

circles of similitude ; prove that these circles are coaxal.

20. Given any three circles S', S", S'", their six centres of similitude lie

three by three on four right lines.

For if r'
} r", r'" be the radii of the circles, the three external centres of

similitude are the centres of the three circles,
* / ,

o/ o" etff o/// citr/ <yO Q O O O o_ = ft _ __ ft __ _ s= O *

iff r
lf '

y" *.'" ' A.'" ..'

J

that is, they are the centres of three coaxal circles. Hence they are col-

linear. In like manner, it may be proved that any two internal centres of

similitude are collinear with one of the external centres of similitude.

21. If the three given circles be a;
2 + y

z + Ig'x + If'y + c' = 0, &c., the

equations of the four axes of similitude are

0,

r',

r",

r'",

-y,

f,
= o. (285)

Where the choice of signs in the first column is thus determined for the

external axis of similitude the signs are all positive, and for each of the

others, two are positive and one negative.

22. If a variable circle touch two fixed circles, the chord of contact

passes through one of the centres of similitude of the two fixed circles.

23. In the same case the variable circle is cut orthogonally by one of

the two circles of inversion of the fixed circles.

24. A system of circles cutting three given circles isogonally are coaxal,

their radical axis being one of the axes of similitude of the three given

circles.
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* SECTION II. A SYSTEM OP TANGENTIAL CIRCLES.

105. To find the equations of the circles in pairs, touching three

given circles Si, S2 ,
S3 .

In equation (271) if 4 reduce

to a point, it must be some point
on

thejcircle touching Slt S2 ,
S3 ,

then H8
,
24 2

,
~34

2

,
will be the

powers of that point with respect

to Si, S2 ,
S3 ,

and may be denoted

by Si, $2, $3, and putting I, m, n

for the squares of the common

tangents, viz., 23
2

> 3l
2
> 12

2

, the

equation (271) gives

o, n, m, Sl

n, o, I, S2

m, I, o, S3

Si, S2 ,
S3 ,

or

=
0, (286)

i
= 0. (287)

Now if we substitute for Sl} S2 ,
S3,

their full expressions in

Cartesian co-ordinates the equation (287) will be of the fourth

degree ;
it must therefore be the equation of a pair of circles

O, Q' tangential to 8
lt S2 ,

S3 . The equation (287) is the pro-
duct of four factors

either of which cleared of radicals gives (287). Hence, for

shortness, we may call any of them such as

(288)

the equation of the pair of tangential circles.

*\
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This result was first published in a Memoir on the Equations

of Circles in 1866, by the author, in the Proceedings of the

Royal Irish Academy.

DEF. The equation (288) is called the NORM o/(287).

106. Since the points A, A' are common to OO' and Si, and

since if in the equation (287) of fifi' we make Si = 0, we get

(mSz
- nS3y - 0, the circle mS2

- nS3
= passes through the

points A, A'- therefore the line AA is the radical axis of St

and mS2
- nS3 . Hence its equation is

(m
-

n] Si- (mS2
- nS3]

= 0.

For this denotes a line, namely,

m(Si-S2)-n(Si-S3)
= 0.

Now Si- S2
= is the radical axis of Si, S2 ;

and Si - S3
=

is the radical axis of Si, S3 ; denoting these by A3, Az ,
we

have mA 3
- nA 2

= as the equation of AA. Therefore the

equations of the three chords AA, BB', CC' may be written

^=-2 =-3
. (289)

I in n

This theorem gives a new method of describing a circle touching

three given circles. For drawing the three lines (289), the two

triads of points A, B, C\ A', ',
C' are determined.

107. If the lengths of the transverse common tangents to

Si, S2 ,
S3 be denoted by ^/l', \/m', ^/ri, respectively, the

norms of the other three pairs of tangential circles will be

(290)

(291)

(292)

108. If we denote the angles of intersection of the circles thus :

(4/8,) by A, ($81) by B, and (S&} by C,

l~7~ I- 1'

we have 2 cos ^A = I
;
2 sin %A = I

,
&c.

Vr2 /-3 \rzrz
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Hence the norms (288)-(292) may be written

cos A x/tfi/rj + cos %B\/S2/rz + cos l[C\/S3/r3
=

; (293)

cos %A V~S^jrl + sin %B /- S2/r2 + sin CV- S3/r3
=

; (294)

sin %A -
tfi/r! + cos BV 2/ra + sin C - Safr9

=
; (295)

en -
S,/r, + sin v/ - S2/rz + cos i tf \/ 3/r3

=
; (296)

EXERCISES.

1. The poles of the chords AA', BB', CC', with respect to the circles

S\, 82, 83, are collinear, their line of collinearity being the radical axis of

n, n'.

2. The radical axis of fi, Q,' is the external axis of similitude of Si, 82, 83.

3. The circle which cuts Si, 83, 83 orthogonally inverts fl into ft'.

4. If the join of the points A, B (fig. 105) intersect the circles Si, 8-t

in the points D, E, respectively, prove that the rectangle AE . DB is equal

to the square of the common tangent of Si, Sz, and thence prove the theorem

of 106.

6. If 2 be the orthogonal circle of Si, 82, 83, the radical axis of 2 and /Si

meets the radical axis of fl and n' in the pole of AA' with respect to Si.

6. The circles n, fl' are tangential to the three circles

lSi-2mSz-2nS3 = 0, mS2 -25r

s
- 2ISi = 0, nSa -2lSi-2mSt = 0.

7. The three systems of points A, A', B, B''; B, B', C, C"; C, C', A, A'

are concyclic, the circles through them being respectively

ISi + mSz - nS3 = 0, mSz + nS3
- ISi = 0, nS9 +lSi-mSt = 0.

109. To investigate the general condition that any number of

circles may have one common tangential circle.

LEMMAS. If f(x) = be an algebraic equation of the nth

degree, whose roots, taken in order of magnitude, are a, 6, c, . . . I,

then
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+ (l
~

a} = 0. (29?{-

'(*-)(*-*) (*-J)(*-<0 (*-*)(* -a)

ffl

- I-2 7n-2++- = - (298)

Lemma 1 may be proved by dividing each fraction into the

difference of two partial fractions. Lemma 2 is well known to

those acquainted with the theory of equations. "When n = 4,

which is the only case in which we shall use this lemma here,

it may be stated thus : If 0, b, c, d be any four quantities, then

a? V <?

(a
-

b)(a
-

c)(a
-
d) (b

-
a)(4

-
c)(b

-
d} (c

-
a)(c -b)(c- d}

110. If be the origin, and A, , C, . . . L any number of

fixed points on a right line passing through ;
X any variable

point on the same line; then, if OA, OJ8, 0(7, ... OL,

denoted by a, b, c, . . . I, x, we have, from lemma 1,

AE BC LA
AX.J1X BX. CX '

LX. AX

Now, if circles whose diameters are 8a ,
S6 , 8,.,

... S{ ,
8X touch

the line OX at the points A, B, (7, ... Z, .3T, then from (300)

we get

AE AX.BX EG BX. OX

v/8.

A/8,.8.

'

\/S, . 8. . 8a . 8.

= = 0.
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Then, inverting from any arbitrary point, since the square of

the common tangent of any two circles divided by the rectangle

contained by their diameters remains unaltered by inversion, we

have, after omitting common factors, the following general

theorem : Ifa circleO touch any number of circles Si, $2 ,
. . . ShSt ,

and if common tangents be denoted by 12, Sfc.,
then

12 23 /I_ + _ _ + . . =-=. = 0.
(300)

\x ._'.' '_'.'. :)./ Ix . \x

111. If 8X reduce to a point, this will be a point on the

circle Q, and Ix, 2x, 3x ,&c., may be replaced by \/8^ \X^2>

v/ S3 ,
&c. Hence we have the following theorem : If a circle

1 be touched by any number of circles Si, S2 ,
Ss ,

. . .
,
the equation

of Q will be contained as a factor in the equation.

Cor. 1. If there be only three tangential circles this equa-
tion reduces to equation (288).

112. From lemma 2, supposing f(x} to be of the fourth

degree, we get in the same manner the following theorem :

If a circle Q be tangential to Jive circles S
, Si, S2 ,

S3 ,
Siy

then

bT2
02

J
03 2 OT

vl
j

12.13.14 12.23.24 13.23.34 14.24-34

and supposing S to reduce to a point, and denoting

the product of all the common tangents from Si to all the

other circles, then

*
f(4)
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EXERCISES.

1. The circle through the middle points of the sides of a triangle touches

both the inscribed and the escribed circles.

For, let Si, Si, 83 denote the middle points of the sides, Sz one of the

circles touching the sides, say the inscribed circle; then Ix, 2x, Sa; are

equal to (b
-

c), $ (c
-

a), \(a b) respectively, and 12, 23, 31, equal to

2C 2a> 2^ an(l these substituted in the equation

12 23 31_ __: + + _ _ = 0,
Ix .2x 2x* 3x 3x ' \x

it vanishes identically.

2. The circle through the middle points of the sides passes through the

feet of the perpendiculars. For, taking Si, Sz, 83, as in Ex. 1, and 8X the

foot of the perpendicular on the side a, then

Ix = b cos C- %a, 2# = - 5> 3x = \c,

and substituting as before.

3. If #1, #2, S3 , St be the inscribed and escribed circles, then (Ex. 1)

they have a common tangential circle n (called the "Nine-points Circle").
Its equation in terms of these four circles is

81 S2 S3

': i T
(a b) (b-c) (c a) (a + b)(b

-
c)(c + a)

+ -
* = o. (303)

4. The equation (301) may be written thus :

- +
.

--^- + ,-
Mr

- = 0- (304)

5. If a circle XI touch four circles whose radii are ri . . . rt, then

Si S2

+

n cos (12) cos (13) cos (14)
rt cos (21) cos(23) cos ^ (24)

O C4
<S3 5*

-

3 cos J (31) cos J (32) cos (34) r* cos (41) cos % (42) cos (43)

'

6. If S be a circle, a point, and OPQ a line through and the centre

of S, meeting the circumference in P and Q, then we have = ^ .

2i" .t ^
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Hence if S open out into a right line, <S/2r becomes equal to OQ ; that is,

equal to the perpendicular from on the right line, into which S opens out.

By means of this principle we can express the equations of the escribed and

inscribed circles in terms of the sides of the triangle of reference and the

"
Nine-points Circle." Thus, in Ex. 5, let Si, Si, 83 be the sides o, ft, y

of the triangle of reference, St the "Nine-points Circle;" then, denoting

the angles of intersection of the sides with 64 by A\, B\, Ci, respectively,

the equation of the inscribed circle is

2 (acoa^A )3 coa^B ycosJC'l

rt .sin .' J isin Ei sin^Ci
= 0. (306)

7. The tangent to the "
Nine-points Circle" at its point of contact with

the inscribed circle is _.
b - c c - a a - o

cos ^ A cos \A a

am^Ai
=

sin (B - C)

=
b~^c'

'

(307)

SECTION III. TEILINEAB CO-OEDINATES.

113. The equation Ifiy + mya + na/3 = denotes a curve of the

second degree circumscribed to the triangle of reference.

Dem. If in the general equation aa* + i/3* + c-f + Shaft

+ 2fj3y + 2ffya
= 0, the coefficient of a2 vanishes, the curve passes

through A ;
for if we make /?

= 0, y = in the resulting equa-

tion, it will be satisfied. Similarly, if the coefficients of (3*, y*

each vanish, it will pass through the points JB, C. Hence the

proposition is proved.

It will be seen in Chapter XII. that every curve of the second

degree can be obtained as the section made by some plane with

a cone standing on a circular base. It is on this account these

curves have been called " conic sections." Hence, for short-

ness, we refer to them as " conic."

-



Trilinear Co-ordinates. 127

COTES' THEOREM.

114. If a transversal drawn through a fixed point Oin the plane

of the triangleABC meet its sides in R1} R2 ,
R3 ,

and ifR be a point

on it such that

J_ 1 V1
/ 1 1 V1 / 1 1 \-i

~OR,
"
'OR]

+
\ORZ OR]

+
\OR3 OR)

'

the locus ofR is a drcumconic of the triangle ABC.
Dem. Let ABC be the triangle of reference, and p', p", p"

f

the normal co-ordinates of 0, then we may prove, as in 54,

that the locus of R is

P') \P'

that is, p'/a+p"/j3+p'"ly = 0, 01 p'py+p"ya+p"'ap = 0. (308)

DEF. The curve (308) is called the polar conic of the point O
with respect to the triangle, and is called the pole of the conic.

C'or. 1 . The polar conic of the point a'ft'y' is

a'/a + p'lP + y'/y = 0. (309)

Cor. 2. If A and B be two points, such that the polar conic

of A passes through B, then the trilinear polar of B passes

through A.

For let the co-ordinates ofA and B be a'/S'y', a"/3"y", then the

polar conic of A is a'/a + {3'{(3 + y'/y
=

0, and the trilinear polar of

B is a/a" + p/p" + y/y" = 0, equation (161). And we get the same

result, whether we substitute in a'/a + @'/(3 + y'/y
= the co-ordi-

nates of B, or in a/a" + /2//3" + y/y" = 0, the co-ordinates of A.

Cor. 3. The trilinear polar of every point on the circum-

conic passes through the pole of the conic.

115. The circumcircle of the triangle ABC is thepolar conic of

its symmedian point.

In order to show this, it is necessary to find the values of

/, m, n, so that l(3y + mya + na/3 = may represent a circle.

Transform Ifiy + mya + nafi = to Cartesian co-ordinates, equate

the coefficients of xz and y
2
,
and put the coefficient of xy = 0.
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This gives

/ cos (ft 4 y) + m cos (y + a) + n cos (a + /?)
=

0,

Z sin (/3 + y) + m sin (y + a) + n sin (a + /?)
= 0.

And eliminating 7, m, w, we get

Py, ya >
aP>

cos(/3 + y), cos(y + a), cos(a + /?), =0.

sin (/3 + y), sin (y + a), sin (a + /?)

Hence /3y sin A + ya sin B + a/3 sin C = 0. (310)

Therefore I, m, n are proportional to sin A, sin B, sin C
;
that

is, to the co-ordinates of the symmedian point. Hence the pro-

position is proved.

116. This proposition may be proved in a manner that will

lead to an important extension. Thus : let A', B', C' be three

collinear points ;
then (

1 ) B' C' + C'A' + A'B' = 0. Hence, ifp
denote the perpendicular from any point on A'C', we have

B'C' C'A' A'B'
+ + = 0.

P P P

Therefore, inverting from 0, and denoting the inverses of

A', B', C' by A, , C, and the perpendiculars from on the

lines BC, CA, AB by a, ft, y, we have ( 89, Ex. 6)

B'C' _ BC C'A' _ CA_
A'B' _ AB_

~p~ V p P
'

p y

Hence BC/a + CAJJ3 + AB/y =
;

or, denoting the lengths ofthe sides of the triangleABCbya, b, c

a/a + b/fi + c/y
= 0.

Now, since the points A', B', C' are collinear, their inverses

A, B, C and are concyclic. Hence, calling ABC the triangle

of reference, the equation of its circumcircle is a\a + b/ft + cjy
= 0, which is the same as (310).

117. It may be shown in exactly the same way that if a polygon,

the lengths of whose sides are a, b, c, d, fyc.,
and whose standard
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equations are a =
0, ft

=
0, &c., be inscribed in a circle, then for

any point on that circle

a/a + b/P + c/y + d/8 + &c. = 0. (311)

This theorem first appeared in the Transactions of the Royal

Irish Academy, vol. xxvi., 1878, in a Memoir ly the author on the

Equations of Circles, pp. 527-610.

118. To find the equation of the tangent to the conic

Ifty + mya + na{3 =
at the point (a/3).

Draw any line a -
kf$

= through (a/3), and eliminating a

between it and the equation of the conic, we get

P{(l + mK)y + ntp} = 0.

This breaks up into two factors, one of which /3 passes through

one of the points in which a - #/3
= meets the curve, the second

(I + mk}y + nk/3
= passes through the other point. This will,

in general, be different
;
but if I + mk = they coincide, and

a - k($
= will be a tangent. Hence eliminating k between

/ + mk = and a k/3
= we get a/I + (3/m = 0, which is the

tangent at the point (a/3). Hence the tangents at the three

summits of the triangle of reference are

a/l + (3/m = 0, j3/m + y/n =
0, yjn + a/l=0. (312)

119. The triangle formed by the three tangents to the circum-

conic at the summits of the triangle of reference is in perspective

with the triangle of reference.

Dem. Let the tangents at B, C meet in A'; at C, A in E'

at A, E in C'. Then subtracting y/n + ajl, which is the tan-

gent at B from ajl + ft/m the tangent at C, we get fi/m
-
y/n = 0,

which is evidently the equation of AA'. Similarly the equa-
tions of BB', CO' are y/n -a/ 1 = and a/ 1 - (3/m = 0, and these,

when added together, vanish identically ;
therefore the lines

A A', BB', CC' are concurrent, and the triangles are in per-

spective.

K
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Cor. 1. The centre of perspective is the pole of the conic

with respect to the triangle ABC.
For the three lines AA', SS', CO' are fi/m = y/n = a/I, and

these intersect in the point (Imri) which is the pole of

l(3y + mya + na(3 = 0.

Cor. 2. The axis of perspective is the trilinear polar of the

centre of perspective.

For the trilinear polar of the centre of perspective is

a/I + (3/m + y/n = 0, and this evidently passes through the inter-

section of afl + film with y ;
of fi/m + y/n with a

;
of yjn + a/I,

with (3.

In these propositions if we put a, b, c for I, m, n we get the

case of the circumcircle and the symmedian point.

120. The chord joining the points a'fi'y', a"fi"y" on the circum-

circle is

aa/a'a" + bfi//3'P" + cy/y'y"
= 0. (313)

- For since the points are on the circle we have

a/a' + I/? + c/y'
= 0, a/a" + b/(3" + c/y" = 0,

atid in virtue of these relations the co-ordinates of each point

satisfy the equation (313). .

Hence it follows that the tangent at the point a'ft'y'

is aa/a'
2 + IP/ft'

2 + cy/y'
2 = 0. (314)

121. The equation of the circumcircle in barycentric co-ordi-

nates is

a*la + P/0 + c*/y
= 0. (315)

Hence the equation of its complementary, (67), that is the

circle (Nine points) through the middle points of the sides, is

V(/3 + y-a) + iV(y + a-^) + c
2

/(a + )8-7) = 0; (316)

and the equation of its anticomplementary, that is of the cir-

cumcircle of the triangle formed by drawing through its summits

parallels to the opposite sides, is

+ c*l(a + )
= 0. (317)
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122. To find the equation of the circle inscribed in the triangle

of reference.

The general equation of the second degree, viz. aa2 + b(3
z

+ cy
z + 2/JO./3 + 2//?y + 2^ya = 0, represents a curve of the second

degree cutting each side of the triangle of reference in two

points ; thus, if we make y =
0, we get aa2 + 2ha(3 + b(& =

0,

which represents two lines passing through the vertex C of the

triangle, and through the points where the curve meets y.

Hence, if it touches y, these lines must coincide, and a2
+ 2ha(3

+ bfi
z = must be a perfect square. Hence it follows that the

general equation of a curve of the second degree which touches the

three sides of the triangle of reference must be such, that if any of

the variables be made to vanish, the result will be a perfect square.

Therefore the equation l
zaz + mz

(3? + nz

y
z -

2lma/3
-

2mnfiy
-
Znlya = 0* represents a curve of the second degree inscribed in

the triangle of reference, because, making any of the variables to

vanish, the result is a perfect square. The norm of this equa-

tion is v/fa. + v/w/3 + ^/ny =
( 105) ;

and the problem to be

solved is to find the values
I, m, n,

so that it may represent a circle.

Now, making y = 0, we get (la
-

m/3~)
z =

;
hence the equation of

OF is la - m(3 =
;
and this must

be satisfied by the co-ordinates of

F, which, from the figure, are evi-

dently 2r cos2 %B, 2r cos2 \A, ;

r being the radius of the circle.

cos2 %A : cos2 $B.
icos2^. Therefore the equation of

Hence I : m

Similarly m : n : : cos2

the circle is

cos + cos ^ C </y = 0. (318)
* The signs of the coefficients of the products a/8, fiy, ya are ---

, + +,

H---h, + + -. Otherwise the equation represents two coincident lines. The
first of these four cases corresponds to the inscribed conic, the others to the

escribed.

K2
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This equation is a special case of equation (293), from which

it may be inferred by the method of Ex. 6, 112.

123. The equation of the incircle may be inferred from that

of the circumcircle by the following method, which is due to

Sir Andrew Hart : Let a', /?', y' be the standard equations of

the sides of the triangle formed by joining the points of contact

of the incircle on the sides of the triangle of reference
; a', b', </,

their lengths ; then, since the incircle is described about this

triangle, we have
a' V c'_ _L __L - = '

a'V y'

but a'

since the perpendicular from any point on the circumference of

a circle on the chord of contact of two tangents is a mean pro-

portional between the perpendiculars from the same point on the

tangents (Sequel in., Prop, x.) ;

a1 V c'

therefore _ + _ -t- = = 0.

v P

Again, if the angles between the lines a = 0, ft
= be denoted

by (a/3), &c., it is evident that a', b', a
1

are proportional to

COS (a/8), cos (/?y), cos (ya)

respectively ;
hence the required equation is

COS j (a/3) cosj(/3y) COS i (ya) _
,- + .

--r - - U.

v a/2 V Py v ya

Or, as it may be written,

cosA V a. + co8\/(3 cosC\/y = 0.

In the same manner the equations of the escribed circles

are

siniC'v
/
y = 0, (319)

sin iCVy = 0, (320)

-/a-f siniJ5'//3 + cosiC
f

v/^y = 0. (321)
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EXERCISES.

1. Find the barycentric equations of the incircle, and the exeircles of

the triangle of reference.

2. The points of contact of the incircle or any of the exeircles of the

triangle of reference form a triangle in perspective with it, and the centres

of perspective are the Gergonne points (see Ex. 54, p. 95).

3. If the points of contact of the escribed circle with the sides of j4.SC be

81)8171, 02/?272, 83(8373, respectively, prove that four triangles whose summits

are the points 0118273, 01)8372, 03/8271, 0218173 are in perspective with ABC.
The centres of perspective are the Nagel points of ABC.

4. If A\B\Ci be the feet of the perpendiculars of ABC, the joins of the

incentres to the circumcentres of the triangles AB\C\, BC\Ai, CA\B\ are

concurrent.

5. Prove the following property of the Gergonne point, denoting it by G,

and drawing through it parallels to the sides, the harmonic means between

the segments into which each parallel is divided at the point O are equal.

6. If through the isotomic conjugate of the incentre of ABC parallels be

drawn to the sides, prove that the length of these parallels intercepted by
the sides of the triangle formed by the middle points of the sides of ABC
are equal.

7. If A, B be any two points, AB is the trilinear polar of the fourth

point of intersection of the polar conic of A and B. Hence, as a particular

case the circumcircle and the polar conic of the centroid intersect in

Steiner's point.

124. To find the equation of the chord joining the points a'P'y',

a"fi"y" on the incircle.

Put for shortness cos %A =
ft, cos %B = m*, cos (7 = n*, and wo

have the two equations

frv/^ + m*</~p' + n*/'y = ;
ft V~d' 4 V~$" + \/y" = 0.

Hence ft = k{v ft'y"
-
\/p"y\, where k denotes some constant,

with similar values for ml and w*; therefore

py -
p"y>= u {py + <Wy} T *, &c.

But the join of the given points is

a((3'y"
- 0Y) + Wa" -

y"a') + y (a'/?"
-

a"/?')
= 0.
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Hence, by substitution, we get

'/3'j
= 0, (322)

which is the required equation. This result is due to Sir

Andrew Hart.

125. If the points a'yS'-/, a"/3"y" become consecutive, the

equation (322) reduces to

0, (323)
Va! <//?'

which is the equation of the tangent to the incircle at the

point a'/?'/.

Cor. The locus of the trilinear pole of the tangent (323) is

the line la + mS + ny = 0. For the co-ordinates of the pole

being denoted by o, (3, y, we have

- B- E 7= /?

Hence Za + w/3 + ny = \/la' + \Sm(3' + \/ny' = 0.

126. If the equation (311) be transformed by Hart's method

(see 123), we get the following general theorem : If a

polygon of any number of sides whose equations are a = 0, ft
= 0,

y = 0, 8 = 0, Sfc., be circumscribed to a circle, the equation of the

circle is a factor in the general equation

COB
, .+ . . . +

/o
127. If the equation (a, b, c, f, g, A)(a, /?, y)

2 = represent a

circle, it is required to find the invariant relations between the

coefficients.

Let S denote any circle, then, since a sinA + ft sin B + y sin C
is a constant, being in normal co-ordinates equal to twice the
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area of the triangle of reference divided by the diameter of the

circumcircle, the equation

hS+ (la + m(3 + ny)(a sin A + ft sin B + y sin C} =

must represent a circle.

Hence, taking S to denote the circumcircle, equating the

coefficients a2
, /3

2
, -f in

kS + (la + mfi + ny) (a sin A + (3 sin B + y sin (7),

and in the given equation, we get

j
a I c

I = : -, ffl = . ,
H = p1

*

sin A sin B sin C

Hence, substituting these values, and equating the remaining

coefficients, we get, after eliminating Tc, the two following

relations :

b sin
2C+ c sinlB - 2/sin B sin C = c sin2^ + a sin2 C- 2ff sin CsinA

= a sin2^ + I sin2^ - 2h sinA sin . (325)

EXERCISES.

1. If the area of the triangle formed by joining the feet of the perpen-

dicular from a point P on the sides of the triangle of reference he given,

prove that the locus of P is a circle concentric with the circumcircle.

2. If through P parallels EPF, FPD', DPE' to BC, CA, AB be

drawn, prove that the locus of P is a circle, if the sum of the rectangles

EP. PF', FP.PD', DP. PE' be given.

The three rectangles are, respectively, equal

a;8 $7 ya
sin A sin

'

sin B sin 0' sin sin A
Hence the locus is oj3 sin G + fry sinA + ya sin B = constant.

3. The equations a2 sin 2A + & sin 2B + y* sin 2 C = (326)

and a2 + 2 + y
z + aj8 cos G + fry cos A + ya. cos B = (327)

represent circles.

4. The general equation of a circle in barycentric co-ordinates is

(a + + 7) (fa + m& + My)
-

5. If the co-ordinates in Ex. 4 be absolute, prove that Ti A; = 1, J, m, n are

equal to the powers of the points A, B, G with respect to the circle.
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6. Find the equation of a circle through a'ft'y, a"ft"y", a'"ft'"y'"- If

S = 0, denote any circle, say, for instance, the circumcircle, then

8, ft,

= 0.

7,

S', a', ft', y',

S", a", ft", y"

S'", a", ft'", y'

is evidently the required equation.

7. Find the pedal circle of a'ft'y'.

The co-ordinates of the feet of perpendiculars are 0, ft' + a cos C,

y' + a cos B ; a + ft' cos C, y' + ft' cos A ; a' + y cos B, ft' + y' cos A, 0.

These suhstituted in (329) give, hy expansion,

(fty sin A + yet sin B+ aft sin C] (ft'y sinA + y a sin B + aft' sin C) (a sin A

+ ft' sin B + y' sin C)

(aa (ft'+y'cosA)(y' + ft'cosA)= sia.A sinB sin C(aB\nA + ftsiaJB+ysin C)
.-in ./

ftft' (y + o' cos ft) (a + y cos
) yy (a + ft' cos C)(ft' + a"coa C)

sin B sin (7

This equation remains unaltered if we substitute for a', ft' , y' their reci-

procals -, ,
. Hence the pedal circle of a point and its reciprocal

a ft y
are the same.

8. The Simson's line of any point a'ft'y' on the circumcircle is

aa' (ft' + y' COS A) (y' + ft' cos A) ftft' (y' + a' cos B} (a
1 + y cos B)

.

sin^ sin B

yy (a + ft' cos C) (ft' + a' cos C)

sinl?
= 0. (331)

9. Prove that ft
2 + y*

-
2fty cos A = constant represents a circle.

10. If S = 0, S' = represent two circles whose radii are r, r, prove
that the circles

(332)

cut orthogonally. (CROFTON. )
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11. If (a, b, c, f, ff, h) (a, , y)
z
represent a circle, and if the same, when

transformed to Cartesian co-ordinates, becomes

find the value of m.

Ans. fe(a + b + c - 2/ cos A -
2g cos B - 1h cos 0).

DEF> jfg s]ian cau m the modulus of the equation.

12. Find the modulus for &y sin A + ya sin B -f oj3 sin C.

Ans. -sinA sin sin C. (333)

13. Find the modulus for the incircle

A 7? C1

Ans. 4 cos2 cos2 cos2 -. (334)

14. If a, b, c denote the lengths of the sides of the triangle of reference,

prove that ao? + fy8
2 + c-f -f (a + b + c) (aft + &y + yx) = denotes a circle

through the centres of the three escribed circles.

15. If R = radius of circumcircle, prove that the modulus of the circle

in Ex. 14 is 2B sin A sin B sin C.

16. The equation b&z + cy~
- aa? + 2 (s

-
a) {&y - ya -< oj8}

= de-

notes the circle through the incentre and two excentres, and its modulus

is - 2 sinA sinB sin C.

17. If S = distance of incentre from circumcentre, prove, by aid of the

modulus of the equation of the circumcircle, that

(335)
Jt + 5 E-5 r

18. If on the sides AB, BO, CA of the triangle of reference portions

SF, CD, AE be cut off equal to

respectively, where A denotes a line of any given length, the triangle EDF
is similar to ABC. For, by an easy calculation,

2
)
- \abc (a

2

with similar values for FEZ
,
ED2

.

19. Find the condition that the general equation in barycentric co-ordi-

nates represents a circle. ,

Ans. (b + e- 2/)/sin
2 A = (c+ a - 2^)/sin

2 B =
(a + b - 2A)/sin

2 C. (336)
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20. Prove that in barycentric co-ordinates

represents a circle.

21. Prove that the anti-complementary of (337) is

(a + + y) (a
2a

=
(337)

ya + C2a0) = 0.

(LOKGCHAMPS.)

22. Prove by the method of mutual powers that the circle through the

middle points of the sides touches the inscribed and escribed circles.

Let N denote the circle through the middle points, X the incircle, and

1, 2, 3 the middle points of the sides, then, by Frobenius's theorem, 98,

we get

= 0.

(LACHLAN.)

(NN),



Trilinear Co-ordinates. 139

But the norm of this is

\/a\ + v'b/ji + \/cv = 0.

Hence y^X + ,/fy, + </w = Q (338)

is the condition that the line Aa + pft + vy = should touch the

circle, and is on that account called its tangential equation.
'

If the equation of the circle be in barycentric co-ordinates

the tangential will be

OA/\ -f I \/p + c\/v = 0. (339)

Second Method. The same equation can be obtained other-

wise as follows : Since Act +
//,/?

+ vy = is a tangent to the

circle, if the point of contact be
a'/3'y', comparing it with equa-

tion (314), we have
a ^

7z> **
=
w*

=
yz

'

Hence -++= */a\ + Vlu. + V cv.
a

But since a'ft'y'
is a point on the circumcircle, we have

a b c
'

__
Hence V a\ + ^/bjj. + V cv = 0.

129. To find the tangential equations of a circle circumscribed

to a polygon of any number of sides.

This problem requires the following lemma : If AB be a

chord of a circle APB, and X, //,
denote the perpendiculars from

A, on the tangent at P ; a the perpendicular from P on AS ;

then a2 =
Xfj.. [Euclid, vi. xvii., Ex. 11.]

Now, if a polygon AS CD, &c., of n sides be inscribed in the

circle, and if the standard equations of the sides be a =
0, (3

= 0,

&c., we have by equation (311)

AS SC CD DE
+ -- + - + -- + &C. = 0.
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Hence, if the perpendiculars from A, B, C, &c., on any tan-

gent to the circle be denoted by A, /*, v, p, &c., we have

AB BC CD LA
- + 7= + + &c + -j-^

= 0, (340)
V A/x, V yu.v V vp v (i)A

which is the required equation.

Cor. If the polygon reduce to a triangle, the equation

(340) becomes

c a b

*fXp, v fj-v v vA

or av/A + b \ p. + c*/v = 0,

which has been already found.

130. To find the tangential equation of the incircle of the tri-

angle of reference.

If Aa +
fj,/3

+ vy = be a tangent to the circle, comparing it

with equation (323), viz.

Ha
= + = + = = 0,

V*.'

-
vrehave =-=A, &c. Hence H</a?=-, &c.

v/a' A

But, since
affi'y' is a point on the circle,

,, . I m n
therefore - + + - = :

A
ft.

v

and restoring the values of
I, m, n (see 124), we get

A
[A

which is the required equation.

131. To find the tangential equation of the incircle of an n-sided

polygon.
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If AB be any chord of a circle, P any point in its circum-

ference, Q, the pole of AB
; then, if a, X be the perpendiculars

from P on AB, and from Q on the tangent at P respectively,

it may be easily proved that a -=- X = sin A QB but K jR be

the radius of the circle, AB = 2E cos ^ Q#. Hence

X

Now, for any inscribed polygon we have, by equation (311),

AB BC CD
T ^r T~ " ~ T OCC. \)m

P 7

Hence, for a circumscribing polygon whose angles are A, B, C,

&c., we have

&c> = 4

where X, ^, v, &c., are the perpendiculars from the angles on

any tangent to the circle.

Cor. In the case of a triangle we get

[ | 43
X p. v

which is the tangential equation for barycentric co-ordinates.

MISCELLANEOUS EXERCISES.

(Ox THE CIRCLE.)

1. Find the centre and radius of a;
2 + y

2 - 6x + 8y - 11 = 0.

2. Find the value of m if y = mx be a tangent to xz -f y
z 6x - 2y + 8 = 0.

3. Find the points where xz + y
z 1x 8y + 12 = cuts the axes.

4. Find the circle through the origin, and making intercepts h, k on the

axes.

5. If the axes be oblique, find the equation of a circle touching each at a

distance a from the origin.
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6. Find the circle through the points (7, 5), (-2,4), (3, -3).

7. Find the circle whose diameter is the intercept made by

a* 4 y
2 = r2 on - 4 ? - 1 = 0.

a o

8. Find in the same case the pair of lines from the origin to the points

of intersection.

9. Find the length of the common chord of (x
-

a)
2 4 (y

-
i)

2 = '2
,

(*
-

*)
2 4 (y

-
a)

2 = r2 .

10. Find the equation of the circle whose centre is (2, 3), and which

touches 3* 4 4y 4 12 = 0.

11. Find the condition that the line \x + py 4 v = may touch the circle

12. Find the radical centre of the circles x1 4 y
2 4 Qx 4 4y 4 12 = 0,

xt + yt
_ QX + 4y + 12 = 0, xz 4 y

2 4 6x - 4y 4 12 = 0.

13. Through 0, the origin, a line OPQ cuts a;
2 + y

2 4 fyx + 2fy + o =

in the points P, Q ;
find the locus of R in each of the following cases :

1. When OR is an arithmetic mean between OP, OQ. 2. A

geometric mean. 3. A harmonic mean.

14. If two tangents be drawn to a;
2 4 y - r2 = from the point (a, 0),

find the equation of the incircle of the triangle formed by the tangents and

the chord of contact.

15. If be the centre of a circle whose radius is r, prove that the area of

the triangle which is the polar reciprocal of a given triangle ABC is

i* (ABC)
2 4 4 (AOB) . (BOG) . (COA). (344)

16. Prove that a triangle and its polar reciprocal with respect to any

given circle are in perspective.

17. If a chord of a given circle of a coaxal system pass through either

limiting point, the rectangle contained by the perpendiculars from its extre-

mities on the radical axis is constant.

18. The three circles whose diameters are the three diagonals of a com-

plete quadrilateral are coaxal.

19. Being given two circles 0, 0'. If AA', BB' be exterior common

tangents, and CO', DD' interior common tangents, prove that 1. CA, C'A'
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/
are perpendicular, and intersect on the line of centres

;
2. If the chords

CA, C'B' intersect in E, CB and C'A' in H', the line JEH' passes through X
the intersection of CC', DD' .

20. Find the polar equation of the circle whose diameter is the join of

the points (p'Q'), (p"Q").

21. The equations of any two circles can be written in the forms

x~ + y
z + 2# +5 =

0, xz + y
1 + 2k'x + 8 = 0, and one is within the other

if kk' and 8 are both positive.

22. If three given circles be cut by a fourth circle ft which is Variable,

the radical axes of n and the given circles form systems of triangles in

perspective.

23. If E be the circumradius of the triangle ABC, prove that the dis-

tance between its orthocentre and circumcentre is

R Vl - Scos^i cosB cos CT (345)

24. The locus of the radical centre of the circles (x a)
2 + (y )

2

=
(r + PY, (x

- aj + (y- bj =
(r + p'Y, (x

- a'J + (y
- b'J = (r + p")\

where r is a variable quantity, is a right line.

25. If ay = k&5 represent a circle, prove that k =
1, and give the

geometrical interpretation.

26. If ay = kfP represent a circle, prove k = \ , and give the interpreta-

tion.

27. ABO ... is a polygon of n sides inscribed in a circle whose centre is

11
;
G is the centre of mean distances of the points A, B, C, . . ., and is

any point on the circle whose diameter is OR. The power of the point

with respect to the first circle is

= (OA* + 0& + 0(7* + . . -)/. (346)

(LAISANT.)

28. Prove that the tangential equation of the circle whose radius is r, and

centre a'fi'y', is

r2
(A.

2 + /*
2+ v2 - 2(*.v cosA - 2v\ cos B - 2\n cos C) =

(\a' + /*' + 1/-/)
2

. (347)

29. The sum of the powers of any point P with respect to the four circles

whose diameters are the four sides AB, BC, CD, DA of a quadrilateral is

equal to four times the power of P with respect to the circle whose diameter

is the line joining the middle points of AC, D. (LAISANT.)
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30. If the sum of the perpendiculars on a variable line from any number

of given points, each multiplied by a constant, be given, the envelope of the

line is a circle.

31. Find the condition that the points are concyclic in which the circles

x* + y* + gx + fy + c = 0, a? + y
z + g'x + f'y + c' = meet respectively

the lines \x + py + v = 0, \'x + p'y + v' = 0.

32. Find the equations of the tangents to the "
Nine-points Circle

"
at its

points of contact with the escribed circles.

33. The circle which passes through the symmedian point P and the

points B, C of the triangle of reference is S 3a sin B sin C = 0, (348)

where S = aft sin C + fty sinA + ay sin B.

34. The circle whose diameter is the side a of the triangle of reference is

a2 cosA = fty + a (ft cos B + y cos C). (349)

This may be inferred from Ex. 14, p. 77, but we indicate an independent

proof here. The equation will evidently be of the form

ka (a sinA + ft sin B + y sin C) + (aft sin C+ fty sin A + ya sin B) = 0.

Now, put ft = in this, and equate the result to a cos A - y cos C, and we

get k = cosA : this gives the required equation.

35. To find the equation of the circle which passes through the feet of the

perpendiculars. The line ft cos B + y cos G a cosA = will evidently be

the radical axis of this circle and the last. Hence the equation will be of

the form

(ft COS.B + 7 cos C - a cos A] (ft
sin B + y sin C + a sin A]

= k {a
2 cos A -

fty
- a (ft cosB + y cos C)} ;

and this must pass through the points whose co-ordinates are 0, cos C, cos B.

Hence k = 2 sin A ; and by substitution and reduction we get

* sin 2A + ft
2 sin 2B + y

2 sin 2(7-2 (fty sin A + ya sin B + aft sin C) = 0. (350)

36-38. 0, ff are two circles, S a centre of similitude, SA'B'AB a secant

through S, circles D, D' touch 0, ff in the pairs of points A, B', A', B,

respectively, when the secant turns. 1. The difference of the radii

of the circles D, D' is constant. 2. One of their centres of similitude

describes the radical axis of the circles 0, 0'. 3. The foot of the radical

axis of D, D' describes a circle. (NEUBERG.)

39. Being given a point C, and two lines, OX, OY, through Care drawn

two lines cutting OX, OY in concycle points, prove that the locus of the

centre of the circle through these points is a right line. (LEMOINE.)
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40. If a, j8, 7 denote the tangents drawn from any point to three coaxal

circles whose centres are A, B, C, prove that

BCo? + CAP + AB-f = 0. (351)

41. Prove that a common tangent to any two circles of a coaxal system

subtends a right angle at either limiting point.

42. If through the symmedian point an antiparallel he drawn to one of the

sides of the triangle of reference, find the equation of the circle described

on the intercept made by the other sides on it as diameter. This will pass

through the three points tan^4, sin C, ; 0, t&nB, sin A
; sin.Z?, 0, tan C.

43. Pascal's Theorem. The intersections of opposite, sides of a hexagon
inscribed in a circle are collinear.

Let the equations of BO be o =
; BE, 7 = 0; EF, =

; OF, $ = :

then the equation of the circle will be a/8 78 = 0.

The equation of AS will he of the form la - 7 = ;
of AF, ft IS =

;

of J)H, &-my = Q; of CD, ma - $ =
;

it will be seen that the line

Ima ft
= passes through each pair of opposite sides.

44. If t', t", t'" be the tangents drawn to a circle from the vertices of

a self-conjugate triangle ;
It the radius of the circle, and A the area of the

triangle ;
then

-4A2-B2 = <'
2 r2 *'"2 . (352)

(PROF. CURTIS, S. J.)

For if (#y),l(#'y')> (
x"'y'"} be the vertices of the triangle, multiplying

the determinants

JK,

.K,

--B,

--B,

-J,

we get

t'
z
, 0, 0,

0, t"\ 0,

0, 0, t'"

which proves the proposition.
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45. Find the equation of the circle whose diameter is any of the perpen-

diculars of the triangle of reference.

46. If a 0, = 0, 7 = 0, 5 = be the standard equations of the

sides of a cyclic quadrilateral, and their lengths a, b, c, d, the equation of

the third diagonal is

it H *

(353)
a /3 7 S
_ + +!+= 0-abed

47. In the same case, if = 0, <p
= denote the other sides of the quad-

rangle, and e, /their lengths, the equations of the remaining sides of the

diagonal triangle are

a f y d> & f $ <t>

- + - + - + 7 = 0,
(l+-+_+r = o.

a e c f b t d f
(354)

48. The circle passing through the summit A of a. triangle ABC, and

through the feet of its internal and external bisectors, is

sin (B - C) (aft sin G + 0-y sin A + ya sin B)

+ (0 sin - y sinfi) (o sinA + ft sin B + y sin C) = 0. (356)

This circle and its two analogues are called the circles of Apollonius ; their

centres are the points of intersection of the sides of the triangle ABC with

the tangents drawn to the circumcircle through the opposite summits.

They are coaxal, the radical axis being the Brocard diameter

sin(J5
- C) a. + sin (C- A) ft + sin (A - B) y = 0.

49. Find the equation of the pair of lines, from the origin to the inter-

section of the circles

<
356 >

50. With the same hypothesis as in Ex. 44, prove

"To * ""2
"

""?
=

~Ty>' \
rilo -r< VyUKTlB, O

Equate to zero the product of the two matrices
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51. IfN = be the equation of the "Nine-points Circle," prove that the

circle whose diameter is the median that bisects a is

N- 2o cosA (a sinA + sinB + y sin (7)
= 0. (357)

52. The radical axis of the circumcircle and the circle whose diameter is

the median that bisects a is

cosB + 7 cos C = 0. (358)

53. Find the equations of the circles whose diameters are the joins of

the feet of the perpendiculars of the triangle of reference.

54. If the three sides of a plane triangle be replaced by three circles,

then the circle tangential to those corresponding to tiie inscribed and

escribed circles of a plane triangle are all touched by a fourth circle

(Dr. Hart's), which corresponds to the "
Nine-points Circle" of the plane

triangle. Its equation is

(359)
12M3M4 21'.23-24 31'.32-34 41'. 42. 43

where Si, Sz, &c., correspond to the inscribed and escribed circles of the

plane triangle, and 12', &c., denote transverse common tangents.

55. Find the equations of the circles whose diameters are the joins of

the middle points of the sides of the triangle of reference.

56. Find the equation of the circle which passes through the points of

intersection of bisectors of angles with opposite sides.

57. If ABCD be a cyclic quadrilateral, AC the diameter of its circum-

circle, prove the difference of the triangles SAD, BCD = %AC2 sa&BAD.

(STEINEK.)

68. If a point in the plane of a polygon be such, that the area of the

figure formed by joining the feet of perpendiculars from it on the sides of

the polygon be given, its locus is a circle. (Ibid.)

59. If any hexagon be described about a circle, the joins of the three

pairs of opposite angles are concurrent. (BRIANCHON.)

Let the equation of the circle be V^a + V?wj3 + ^ny = ; ABO the tri-

angle of reference ;
and let the equations of the alternate sides DU, FG,

HK of the hexagon be respectively

Ao + /u + vy = 0, \'a + (*.'& + v'y = 0, A."o -f (*."& -I- v"y = 0.

Hence
( 130),

I m n I m n I m n
-+_+- = 0,

- + -+- = 0, -7; + + = 0. (1.)\ ft.
v \ fj. v \

ft.
v

L 2
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Again, the equations of the three diagonals are easily seen to be

for OD,

HE,

+ T- + -7- = 0;
ft V \V \

/J.

\"v

B K D C

And the condition of concurrence is the vanishing of the determinant.

1
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The co-ordinates of the radical centres of the three escribed circles are

r\ cos J (2?
-

C) /2 sin J A, &c. Substitute these in the equation of the ex-

circle, which touches a externally, viz.

a2 cos4 \A + /3
2 sin4 JB + y

z smi^C- 20? sin2 %B sin2 C

+ 2ya sin2 C cos2 <4 + 2 cos2^ sin2 J JJ,

and divide the result by the modulus "of the circle
; that is, by

4 cos2 1 A sin2 \ sin2 1

The quotient is the square of the radius of the orthogonal circle. In

reducing, we substitute for r the value a sin | sin ^CIcos^A. Thus

we get

R = ~ 7 -. (1 + cos A cos B + cos JB cos tf + cos G cos -4)*.

61. If A', B', C' be the feet of the altitudes of the triangle ABO, prove
that the. joins of the incentre and circumcentre of the triangles AB'C',
BC'A', CA'B', respectively, are concurrent, and that the common point is

at the contact of the incircle and "
Nine-points Circle."

62. A similar theorem is true for the joins of the excentres and circum-

centres.

. 63. The diameters of the circles cutting the inscribed circle and two

escribed circles orthogonally are

-
-3 (1 +cos.4 cos B- cos B cos C+ cos cos A) J, &c. (361)

64. Prove by the modulus of the equation of the "
Nine-points Circle"

that it touches the inscribed and escribed circles.

65. Prove that the determinant

y +f >'* +fy

y +f", g'

y+f", 9'

= (362)

is the circle orthogonal to the three circles xz + y
z + 2g'x + If'y + e' = 0,

&c.

66. There exists a relation of the form 2wP= constant, where m\f*m t &c.,

are certain constants whose sum is zero, between the powers PI, PZ, &c.,

of any arbitrary point M, and four fixed circles whose centres are AI, A 2 ,

&c.
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For let Pi s x* + y
z - 2aix -

Then, eliminating a;
2 + y

2
, x, y ;

-Pi
-

71, 1, 01,

Pz - 72, 1, 02,

fs 73, 1, as,

Pi -74, 1,

= 0.

Hence = 271 . (363)

Cor. If 71 = 72 = 73 = 74, the four circles are orthogonal to a fifth, and

then 2P = 0.

67. There exists a relation of the form 2mP = between the powers of

any arbitrary point with respect to five fixed circles. ~S,m in this relation is

zero. (Ibid.)

68. If three circles whose centres are A', B', C' pass respectively through

the pairs of points B, C; C, A ; A, B ;
and if their powers with respect to

A
t B, C be Pa , PJ, PC, the barycentric co-ordinates of the radical centre

are 1/P , 1/Pj, 1/PC . (NEUBERG.)

69. In the same case, if be the circumcentre of ABC, the areas of the

triangles OB'O', OC'A', OA'B' are proportional to 1/P , 1/P&, 1/PC .

(Ibid.)

70. Find the equation of the circle whose diameter is the join of the

orthocentre and symmedian point of the triangle of reference.

Ans. 2o2 cosA (sin
2J5 + sin 2(7)

- 2o)3 cos (A -
B) sin B sin G.

(364)



CHAPTER IV.

THE GENEEAL EQUATION OF THE SECOND DEGEEE.

CAETESIAN CO-OEDINATES.

1 32. The equation S = aa? + 2hxy + ly* + 2gx + 2fy + c = 0, or

as it may be written u2 + Ui + u =Q where uz denotes the terms

of the second degree, &c., is the most general equation of the

second degree. The object of this chapter is to classify the

curves represented by it, to reduce their equations to their

normal forms, and to prove some properties common to all these

curves. Our investigations will include the following sub-

divisions :

1. Centres. 2. Diameters. 3. Conjugate Diameters.

4. Axes. 5. Tangents. 6. Poles and Polars. 7. Classifica-

tion of Conies. 8. Asymptotes. 9. Newton's Theorem.

PEELIMINAEY ALGEBEAIC PEOPOSITIONS.

133. In any quadratic equation ap* + bp+ c = 0, if the coefficient

of p
2
vanish, one of the roots will le infinite and the otherfinite. If

the coefficients of p* and p vanish loth roots will be infinite.

Dem. Put p = - and the equation ap* -f bp + c = becomes

cp'
z + Zip' + a = 0. Now if a = one value of p' is zero, and

the other is 25/c. Again, if not only a = but also b = the

second value of p' is zero
;
but when p' is zero p will be infinite.

Hence the proposition is proved.
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134. DBF. The result obtainedfrom any expression 8 in x by

multiplying each term by the index of x in that term, and dimi-

nishing the index by unity, is called the derived of 8 with respect

to x.

The equation 8 = ax2 + 2hxy + by* + 2gx 4 2fy + c = has

three distinct derivatives.

1. "With respect to x, lax + 2hy + 2g.

2. "With respect to y, 2hx 4 2by 4 2/.

3. If we make 8 homogeneous by writing it in the form

ax2 + by
z + c& + 2fyz + 2gzx + 2hxy = 0,

in which z denotes a linear unit, we get a derivative with

respect to z, viz. 2gx + 2fy + 2c. "We shall denote the halves

of these derivatives by $
1} $2 ,

$3 , respectively. Thus

#! s ax + hy 4 g. (365)

S2
= hx + by+f. (366)

S3 =gx+fy + c. (367)

135. From equations (365)-(367) we get at once Euler's

theorem

(xS, + yS2 + z 3)
= 8. (368)

CHANGE OF OEIGIX.

136. Transform 8 s ax* + 2hxy + by
2 + 2gx 4 2fy + c = to

parallel axes through the point xy we get

ax3 + 2hxy 4 hy* + 2 flja? 4- 2% 4^=0. (369)

The following remarks on the composition of the new equa-
tion are very important : 1. The terms of the second degree
in x, y are unaltered. 2. The coefficients of the terms of the

first degree are the powers of the point xy with respect to the

derivatives of 8. 3. The last term is the power of xy with

respect to 8.
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INTERSECTION OP A LINE AND A CONIC.

137. In order to find the intersection of a line y =

with S, we transfer to parallel axes through a point x y of the

line. Then S becomes

ax2
4- 2hxy + If + 2x + 2Sy + = 0,

and the line becomes y = mx. Hence, for the points of inter-

section with S, we have

x* (a + 2hm + 1>m*) + 2x (fli + m7&) +' ~= 0.

Hence we infer that a line cuts the conic 8 generally in two

points. We distinguish the following particular cases, which

will be studied more in detail further on

1. If (S, + mS2 }

2
-(a + 2hm + In?} 8^=0.

The line is a tangent to the curve
;
and as this is a quadratic

in m, we can from x y draw two tangents.

2. If a + 2hm + Im? = 0, every line whose angular coefficient

satisfies this equation meets the curve in one finite point, and

in another at infinity.

3. If a + 2hm + bmz = 0, $t + mS2
= 0, the curve meets the

line in two points at infinity.

4. If a + 2hm? + bm? = 0, 8l+ mS2 = 0, 8 = 0, the line is

contained as a factor in S.

The discriminant of S and the minors are given in 37
;
from

the values there given we find at once

Fz =a&, CA- G* = JA, AB - Hz = cA \

. (370)
GH- AF=k HF-BG = & FG-CH= AA )

CENTEE.

138. DEF. A point in the plane of a conic which is such that

every secant passing through it meets the curve in points equidistant

from it is called the centre.
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LEMMA. If the origin be the centre the terms of the first degree

in the equation 8 = ax2 + 2hxy + by
2 + 2gx + 2fy + = vanish, and

conversely.

In fact, two points, symmetrical with respect to the origin,

have co-ordinates of the forms x, y ;
-

x,
-

y. Hence the equa-

tion does not change if the origin be centre, when x, y are

replaced by -
x,

-
y. This requires that / = 0, g = 0, which

proves the proposition.

KESEAECH OF CENTEE.

139. If the point xy be the centre of S, then from the Lemma
and equation (369) we must have Si =

0, S2
= 0. Hence the

point common to the lines represented by the derivatives of S with

respect to x and y is the centre. Now, since these lines, viz.

Si = ax + hy + g =
0, Sz

= hx + by +f= 0,

may intersect 1 in a finite point, 2 at infinity, 3 be coincident,

we have three distinct cases to consider.

1. Let ax + hy + g = 0, hx + by +f= intersect in a finite

point.

Solving for x and y we get the co-ordinates of the centre,

viz.

x = (hf- bg)l(ab
- A1

)
= G\ C. (371)

y=(gh- af)/(ab
- A2

)
= Ff C. (372)

Since these values are finite, C does not vanish. "We shall

see, in 152, that the curve is an ellipse or hyperbola according

as C is positive or negative. These curves having a finite centre

are called central curves.

2. Let ax + hy + g = 0, and hx + by +f= be parallel.

Here we have, 27, Cor. 1, ab - h* =
0, that is (7=0.

Hence the co-ordinates x, y are infinite, that is the centre is at

infinity. The curve is in this case called a parabola. Now,
C = is the condition that w-j

= may be a perfect square.

Hence, in the parabola the centre is at infinity, and the terms of the

second degree in 8form a perfect square.
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3. Let ax + hy + g = 0, and Tix + ly +/= be coincident.

Here, we have a/h = h/b =
gjf. Hence

ab-W=Q, hf-bg = Q, gh- af=0, or C=Q, G=0, F=0,

and the co-ordinates x, y are indeterminate, as they should he
;

since in this case every point on ax + hy + g = is also a point

on hx + ly +/= there is a line of centres.

REDUCTION OF THE EQUATION TO THE CENTRE.

140. If there exists an unique centre, xy, the equation (369)

becomes ax* + 2hxy + ly* + S =
0, for the co-ordinates x, y make

S1 =0, 8t
= 0. But from Euler's theorem, xSi + yS2 + z.S3 = 8.

Hence, substituting the co-ordinates x, y we get

~S = S3 =ffx +fy + c=(gG +/F+ cC}IC= A/ C.

Hence the equation when transferred by parallel axes to the

centre is

ax* + 2hxy + fy* + &/C= 0. (373)

141. If there exist a line of centres the general equation repre-

sents two parallel lines.

For, transferring the origin to any point a, y of the line of

centres, we have ax2 + 2hxy + by
z + S3

=
0, as in 140, multi-

plying by a, and substituting A2 for ab, this becomes

(ax + hy}* -f aS, = 0, (374)

which represents two parallel lines
; real, if aS3 be negative,

imaginary if positive.

DIAMETERS.

DEF. The locus of the middle point of a system of chords parallel

to a fixed direction is called the diameter conjugate to that direction.

142. Let y = mx + n be a fixed line.

Transferring the origin to any arbitrary point C (xy} we get

ax* + 2hxy + bf + 2SiX + 2Sty + "S = 0,
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and drawing through. C a parallel to the line y = mx + n, this

will be y = mx. And the abscissae of its points of intersection

with S are given by the equation

xz
(a + 2hm + bm*) + 2z (S, + mSz} + 8 = 0. (1)

O A X

Supposing a + 2hm + bmz not zero, then the line y = mx cuts S

in two points J), E. In order that C may he the middle point of

DE, the roots of the preceding equation must he equal in mag-

nitude, and have contrary signs, which requires Si + mS2
= 0.

Therefore the locus of the middle points of a system of chords

parallel to the line y = mx + n is

#! + mS2 = 0. (375)

Hence the diameters of conies are right lines.

Also, since Si+mS2
=

0, passes through the intersection of S^ Sz ,

it passes through the centre. Hence every diameter passes through

the centre.

Discussion. The equation 8t + mS^ = may he written

x (a + nth) + y (h + mb) + (g + mf} = 0. (2)

1. The equation (1) will be of the first degree if

(a + 2hm + bmz
)
=

0,

and there will be no diameter, properly so called. See 153,

Asymptotes.

2. The angular coefficient of the diameter (2) is

(a + mh] a fl + mhla\
**%' __

x
: _ _ I

h+mb
'

h\l + mb/hf

This varies with m, unless h/a = b/h, or ab - h2 = 0.
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Hence, in central curves every system of parallel chords has a

corresponding diameter.

3. If h/a =
b/h, or (7=0, m! = -

ajh, and is independent

of m, but m' is the angular coefficient of (2). Hence, in the para-

lola all the diameters are parallel. The diameter is illusory if

a + mh = 0, h + mb =
Q, for then m! = -

;
but the case of a + mh

= 0, or m = -
a/h is that of the diameters of the parabola. Hence

the diameters of a parabola form a parallel system which do not

admit a diameter.

4. If we have, at the same time, a + mh = 0, h + mb = 0,

g + mf =
0, or m = -

ajh = -
h/b

= -
g\f, the equation (2)

vanishes identically. This occurs when the general equation

represents two parallel lines.

Cor. 81 = is the equation of the diameter which bisects

chords parallel to the axis of x
;
S2

= of the diameter which

bisects chords parallel to the axis of y.

CONJUGATE DIAMETERS OF CENTRAL CONICS.

143. From the equation m' = - ?
+
"V , 142, 2, we get

fl H~ WlO

a + h (m + m'} + bmm' = 0. (376)

Since this equation is symmetrical in m, m', it follows that the

diameters whose angular coefficients are m, m' are such, that

each bisects chords parallel to the other. Such diameters are

called conjugate diameters.

Cor. 1. If in the general equation, h = 0, the axes of x, y are

parallel to a pair of conjugate diameters.

For, if h = 0, Si = reduces to ax + g ~ 0, that is, the diameter

which bisects chords parallel to the axis of x is parallel to the

axis of y.

Cor. 2. If two conjugate diameters be taken for axes, the equa-

tion of the curve will be of the form MX* + JVy
2 + P = 0.

For to each value of x will correspond two values of y, which

are equal in magnitude, but of contrary signs.
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AXES.

144. DBF. A diameter of a conic which is perpendicular to

the chords which it bisects (called its conjugate chords} is called

an axis.

PAEABOLA. The angular coefficient of the diameters of a

parabola is = -
a/h. Hence the angular coefficient of the chords

perpendicular to the axis is h/a, and substituting in 8r +mSz
= 0,

the equation of the axis of the parabola is

fltf, + hS2 = 0. (377)

CENTRAL CURVES. The condition that two diameters are con-

jugate is, a + h (m + m'} + bmm' =
(376), and if these are per-

pendicular, mm' = - 1 . Hence eliminating m'
}
we get

m*-m(b- a)lh -1=0. (378)

This being a quadratic in m, shows that there are two axes.

If h = 0, and b a not zero, the roots are m = 0, and m = oo
,

and the axes of symmetry are parallel to the axes of co-ordinates.

If h =
0, and b - a =

0, the equation (378) is indeterminate.

This is the case when S denotes a circle, and every diameter

is an axis.

KEDUCTION OF THE GENERAL EQUATION TO THE NORMAL FORM.

145. CENTRAL CURVES. It has been proved ( 140) that when

the centre is origin, the equation of the curve is

axz + 2hxy + bf + A/ (7 = 0.

We shall now show that this equation can be further simplified.

Thus, transforming by the substitution of 18 to new rect-

angular axes, inclined at an angle to the old, that is putting

x = a: cos B - y sin 6, y = x sin 6 + y cos 0, we get

oV + Ih'xy + b'f + A/ C = 0,

where a1 = a cos2 + b sin2 + h sin 26, (379)

b' = a sin2 + b cos*0 - h sin 20, (380)

2h' = 2h cos 29 -
(a

-
b) sin 26. (381)
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Prom these equations we get, after an easy calculation,

a' + = a + b, and a'V - h'
2 = ab - h2

. (382)

Hence a + b, and ab - h2 are invariants. In other words, they

are functions of the coefficients which are unaltered by trans-

formation from one rectangular system to another.

If h' = we have, from (381),

tan 20 = 2h/(a
-

),* (383)

and the equation of S is reduced to the form a'x2 + Vy
2 + A/ C= ;

and since h' = we have, from (382),

a' + V = a + b, a'V = ab- h2
.

Solving for a', b' we get, putting R2 = 4h2 + (a
-

b}
2

,

of = (a + b - J2), V = I (a + b + }. (384)

Hence S=(a + b - IT)x
z + (a + i + 72)y

z + 2A/C'=0. (385)

If this be written in the form

#2

/a
2 + y

2

//3
2
=l> (386)

which is the normal form, we have

a-2 = -C(a + b-E) /2A, p~
2 = - C (a + b + )/2A.

Hence a2
, ft

2 are the roots of the quadratic

^ +^V-0. (387)

Cor. The equation of the new axes when referred to the

old is

hx2
-(a- b)xy

-
hy

2 = 0. (388)

This is obtained from (378) by putting m = yfx.

THE PARABOLA.

146. In equation (377), if we put h = a%$, and substitute

for $!, S2 their values, we get the equation of the axis of the

parabola in the form

a\x + i\y + (fig + J*/)/(a + i)
= 0. (389)

* For a discussion of this equation, see notes at the end of volume.
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Hence, by an easy calculation,

S = a*x + b*y + (a*g + #/)/( + b}

-
{ (a + &) (2 Ox + 2Fy)

- aB - IA + 2hH
} /(a + J)

2 = 0.

Now making a?x + $y + (cfcg + b?f)/(a + J)
= 0,

and (a + b) (26fx + iFy}
- aB - bA + 2hH = 0,

our new axes of co-ordinates
; then, if y', x1 be the perpendicu-

lars from any point xy of S on these lines, we get

y' \/a + b = c$x + $y + (cfrg

2*' (a + 3) /( G* + Fz

]
=

(a + 1} (2 Gx

Hence, by substitution,

or, omitting accents, y
a =

/ 7 \O J

(a + )
2

and putting ^?
= -. 7^ ,

y*=pz, (390)

which is the standard form of the equation of the parabola.

The quantity p is called the parameter or latus rectum.

Cor. 1. The new axes are perpendicular to each other.

For the condition of perpendicularity is a?G + b^F =
;
and

this is easily shown to hold when a?b? = h.

Cor. 2. The co-ordinates of the new origin are found by

solving for x and y from the equation

cftx + b^y + (tfig + J^/") / (a + 4)
=

;

or ax + hy + (ag + hf)l(a + b}
= 0,

and 2Gx + 2Fy = (aB + bA - 2hE}l(a + b).

Thus

(391)

}(a + b}

Cor. 3. The parameter of the parabola (392)

= 2 V(G* + F*}l(a + b}\ (393)
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TANGENTS.

147. If we transform the equation to parallel axes through a

point M (x y} on the curve, we get

ax* + 2hxy + by
2 + 2Stx + 2S2y = 0,

since S = 0, as xy is on the curve. Then, through the new

origin, draw a line y = mx, and eliminating y we get

x* (a -f 2hm + lm*} + 2x (Si + mS2)
= 0,

one of the values of x in this equation is zero, because the line

y = mx meets it at the new origin, and the other is

- 2 (Si + mSz}l(a + 2hm + bmz

).

This second value will also be zero if y = mx touch the curve.

Hence in this case, Si + mS2
=

;
and eliminating m between this

and y = mx, we get for the tangent the equation xSi + yS2
=

referred to the new axes, or (x -x)Sl + (y-y}Sz
= Q when

referred to the old. But by Euler's theorem,

x'Si + ySz + zS~3 = S = 0.

Hence the equation of the tangent is

xS^ + yS2 + S3
= 0. (394)

TANGENTIAL EQUATION.

148. find the condition that the line \x + py + v = may be a

tangent to S = 0.

Eliminating y between \x + fiy + v = and S = 0, we get a

quadratic in x, whose roots will be the abscissae of the points

where the line meets the curve
;
now these will coincide if

it touches the curve. Hence the condition required is found

by forming the discriminant of the equation in x. Thus we get

0, (395)

where A, It, &c., have their usual meanings.

M
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POLES AND POLARS.

149. To find the ratio in which the join of the points x'y', x"y"
is cut by S. Let the ratio be k : 1

;
then the co-ordinates of the

point of intersection are

(*'+&")/(! + *), (y' +%")/(! + ),

and these substituted in S give the quadratic

S' + 2kP" + &8" = 0. (396)

"Where 8', S" denote the powers of the given points with

respect to S, and P" the power of x"y" with respect to the line

P = Si's + S2'y + S3
' = 0. (397)

The equation (396) is a fundamental one in the theory of

conies. Several important theorems are inferred from it by sup-

posing its roots to have special relations to each other.

1. Suppose the sum of the roots to be zero.

Then P" = and the point x"y" must be on the line P.

R

Let, in the annexed diagram, Q, R be the points where the join
of the points A, B, that is of x'y', x"y", meets the curve, then

the values of k are the ratios A Q : QB, AR : RB, and these are

equal, but with contrary signs, since their sum is zero. Hence
AB is divided harmonically in Q and R.

Cor. 1 . Any line through A is divided harmonically by (P)
and S.

Cor. 2. (P) is the chord of contact of tangents from A.
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For if the line QR turn round A .until the points Q, It coin-

cide, then since B is the harmonic conjugate of A with respect

to Q, R when Q, R come together, B coincides with them, and

the line AS will be a tangent.

DBF. The line (P) is called the polar of the point x'y'.

Cor. 3. If a point be external to a conic its polar cuts 'the

conic. If the point be internal its polar is external. For the

harmonic conjugate to an internal point on any line passing

through it is external to the conic. Lastly, if a point be on

the conic its polar is the tangent at the point, for then equation

(397) is the same as-^)4).

2. Let the anharmonic ratio of the four points A, B, Q, R be

given.

In this case the roots of (396) have a given ratio, let this

ratio be X, and changing k into k\ in (396) we get

8' + 2AP" + " = 0.

Eliminating Tc between this and (396) and omitting double

accents we get the locus of a point B, which divides a secant of

S passing through a given point in a given anharmonic ratio,

viz.

(1 + A)
2 88' - 4AP2 = 0. (398)

PAIR OF TANGENTS FEOM A GIVEN POINT.

150. Let the roots of (396) be equal, since the roots are the

ratio AQ : QB, AR : RB,

they will be equal only when -^
^""~ ~~^--O. A.

the points Q, R coincide,
^

that is when the line AB is

a tangent to the curve. The

condition for equal roots in

(396) is 8'8"- P"2 =
0, which

must be fulfilled when x"y" is on either of the tangents from x'y'.

M 2



164 The General Equation of the Second Degree.

Hence, supposing the latter fixed and the former variable, we

get the equation of the pair of tangents from x'y' to S, viz.

SS'-P* = 0. (399)

Cor. The angular coefficients of tangents from xy to S are

given by the equation

mz

(S? -
IS) + 2m (81 S~2 - hS) +~Si* - 08 = 0. (399')

For this is the discriminant of

3? (a + 2hm + bm2
} + (Si + mSJ x +^8 = 0. ( 142.)

OKTHOPTIC CIRCLE.

151. If the equation SS' - P* = be expanded we get

( Cy
n
-2Fy\B)x

l + ( Cx'
2

-2Gx'+A)y*- 2( Cx'y'- Faf- Gy'+H)xy

+ 2 (Fx'y
1 -

Gy'
z - Bx' + Hy)x+2( Gx'y'

- Fx"> + Hx' -
Ay') y

+ Bxn - 2Hx'y' + Ay'* = 0. (400)

Now if these tangents be at right angles to each other the sum

of the coefficients of x* and y* is zero. Hence, omitting accents,

we find the locus of points whence rectangular tangents can be

drawn to a conic to be the circle.

C(x
2 + y*)-2Gx-2Fy + A + = 0. (401)

This is called the orthoptic circle of the conic.*

Cor. 1. If the curve be a parabola (7 =
0, and the locus of

points whence rectangular tangents can be drawn to the curve is

ZGx + ZFy - A- B = Q. (402)

Cor. 2. If x' = 0, y' = 0, equation (400) reduces to

Ex* - 2Sxy + Ay* = 0.

Hence the pair of tangents from the origin is

x* - 2Hxy + Ay* = 0. (403)

Cor. 3. The equation (400) may be written

- *J + C(xy'
-

x'y}
2 - 2F(x -

x')(xy'
-
x'y)

')(xy'-x'y)-2H(x-x
l

)(y-y') = Q. (400')

Compare (395).

* This circle lias hitherto been called the director circle in English works ;

but that term is now employed by French writers to denote the circle whose

centre is a focus and whose radius is equal to the transverse axis.
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CLASSIFICATION OP CONICS.

152. From 142 we see that if the origin be transferred to

any point xy on the line y = mx + n the abscissae of the points

in which y = mx + n meets the curve are the roots of

xz
(a + 2hm + bm?) + 2x ('Sl+mS^) + 8 = 0.

Now, 133, one of these points will be at infinity if

a + 2hm + bm? = 0. Let the roots of this equation be m
lt m2 .

These are real and distinct if h2 - ab be positive, showing that

two systems of parallel lines, viz. y = m^x + n, and y = m^x + n,

where n may have any value, can be drawn, each meeting the

curve at infinity. This form of the curve is called a hyperbola.

Hence the condition that S = represent a hyperbola is

K - ab > 0.

Secondly If W - ab = 0, m^ = m2 , only one system of parallels

can be drawn meeting S at infinity. The curve in this case is

called a parabola (see 139, 2).

Lastly Let m lf mz be imaginary. Then no system of

parallels can meet the curve at infinity. This species is closed in

every direction and is called an ellipse ; m^ mz are imaginary

when W ab is negative. Hence the curve will be a hyperbola,

a parabola, or an ellipse, according as A2 - ab is positive, zero,

or negative.

Cor. 1 . The hyperbola meets the line at infinity in two real

and distinct points, the parabola in coincident points, and

therefore touches it, and the ellipse in two imaginary points.

Cor. 2. If either a or I vanish but not h, or if a and b have

contrary signs the curve is a hyperbola, for in these cases A8 - ab

is positive.

Cor. 3. The circle is a species of ellipse, for in the circle

h = 0, and a = b. Hence hz - ab is negative.
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Example. C, D are two fixed points ia the diameter A~B of a circle,

and GE a semichord parallel to AB. The locus of P the intersection of

DG, CE is a conic. (BKOCAED.)

Let be the centre. Join OH, and let CO =
c, DO =

d, and the angle

BOE = e
; then the equations of CE, DG are

(r sin Q)x - (r cos 9 + c) y + re sin 8 = 0, (
sin 0) a: - dy + nJ sin = 0.

Hence eliminating we get

(c
- dy xz + dV - r2

(x + d)* = 0,

which by the foregoing condition is an ellipse, a parabola, or a hyperbola,

according as (c d)
z r2 is positive, zero, or negative.

ASYMPTOTES.

153. In the case of the hyperlola, if the line y = mx + n meet

S in two points at infinity, that is if it touch it at infinity, it is

called an asymptote. When this happens the two values of x in

the equation

mS2 + 'S=

are infinite. Hence, 133, a + 2hm + Im* =
0, and Sr + mS2

=
0,

and eliminating m we get aSz
- 2hS

lt
S2 + 18^ = 0, or restoring

the values of Slt S2 and reducing we get

CS - A =
0, (404)

which is the equation of the two asymptotes. They are at right

angles if the hyperbola be equilateral.
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Cor. I. If /= 0, g = 0, that is if the curve be referred to

the centre, the equation of the asymptotes is axz + 2hxy + by
z = 0.

Hence, when the equation of a conic is in the form u^ + u = 0,

w2
= is the equation of the asymptotes.

Cor. 2. If < denote the angle between the asymptotes,

tan2 = 4 (7/0+ b}\ (405)
'

Cor. 3. The asymptotes intersect in the centre.

Cor. 4. The line at infinity is the polar of the centre.

For it is the chord of contact of the asymptotes.

Cor. 5. An asymptote is a diameter conjugate to itself.

THE HYPEEBOLA EEFEEEED TO THE ASYMPTOTES.

154. Let the co-ordinates of any point P in the hyperbola,

ax* + 2hxy + by
2 + A/ C = 0, with respect to the asymptotes, be

#', y'. Now, if from P perpendiculars be drawn to the lines

ax* + 2hxy + by*
= 0, it is easy to see that their product is equal

to the power of P with respect to the lines divided by JR, where

R has the same meaning as in 145
;
but these perpendiculars

are equal to x' sin <, y' sin
<j>, respectively. Hence

x'y
1
sin2 < =

(oaf + 2hxy + by^jR,

and from equation (405) we get, sin2
<f>
= 4 C/R*. Hence

axz + 2hxy + by* = x'y' . 4 C\R,

and therefore the equation of the hyperbola referred to the asymp-
totes is

xy + J2A/4C
2 = 0. (406)

NEWTON'S THEOEEM.

155. If through a point P two chords le drawn, meeting the

conic in the pairs of points A, ; C, D, respectively, then the

ratio PA . PB : PC . PD is constant whatever be the position of

P, provided the direction of the lines is constant.

Dem. Let the lines PAB, PCD be taken as axes, then, if

the equation of the conic be

ax* + 2hxy + by
z + 2</x + 2fy + c =

0,
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putting y = 0, PA, PB are the roots of ax2 + 2gx + c = 0. Hence
PA . PB =

c/a, similarly,

PC.PD =
c/b, i. e.PA.PB-.PC.PDi: I/a : l/b.

Now, if the curve be referred to parallel axes through any point,

the coefficients a, b remain unaltered. Hence the proposition is

proved.

Cor. If through any other point P', two lines, P'A'B',
P' C'D1 be drawn parallel to the former, and cutting the conic

in A, B'
; C', D', then

PA.PB-.PC.PD:: FA' . P'B' :P'C' . PD1

. (407)

156. Newton's theorem corresponds to Euc. m., xxxv.,
xxxvi. The following are special cases :

1. If P be the centre, then PA = PB, PC = PD, and we
have the following theorem from (407) : The rectangles con-

tained by the segments of any two chords ofa conic are proportional

to the squares ofparallel semidiameters.

2. If the lines PAB, PCD turn round the point P until they
become tangents, PA . PB becomes PB1

,
and PC . PD becomes

PD*, and we have the following theorem : The squares of two

tangents drawn from any point to a conic are proportional to the

rectangles contained by the segments of any two parallel chords.

Also, two tangents from any point to the conic are proportional to

the parallel semidiameters.

3. Let the join of PP1

produced be a diameter, and let the

lines through P be this diameter,

and its -conjugate CD, then the

chords through P' will be AB
and C'D1

,
of which the latter is

bisected in P'. Then, denoting

AP by a, PC by b, PP' by x,

and PC' by y, we have, from

(407), o2 : 5
2

: : (a + x} (a-x] :y
z
,

or, x2

/a* + y*/b
2 =

1, (408)

which is the normal form of the equation of central conies.
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157. The demonstration in 155 fails if either axis of co-ordi-

. nates meets the curve at infinity, for in that case either a =

or b = 0. Suppose a - 0, then either PA or PB will hecome in-

finite. Let PA remain finite, then PA =
cflg, and as in 155,

PC.PD =
ell. Hence, PA : PC . PD : :

- 1 : 2ff. Now, if we

transform the equation to parallel axes through a new origin,

x, y, I will remain unaltered, and the new g will be hy + g ;

hence the new ratio will he - b : 2 (hy + /?). Now, if the curve be

a parabola, h2 - al = 0, but a = by hypothesis ;.
hence h = 0, and

the ratio will be unaltered.

Hence, if a line parallel to a given one meet any diameter of a

parabola, the rectangle contained ly its segments is proportional

to the intercept on the diameter.

Thus, if CD, C'D' be paraUel chords, APP' the diameter

which bisects them, then

AP : AP' ::CP.PD: C'P' . P'D',

or, AP-.AP':: CP2
: C'P'2

.

Hence, supposing P fixed and P'

variable, and denoting AP', P'C' A

by x, y, respectively, we have

y
2 :CP2 ::z:AP;

therefore, putting CP2 = 4a . AP,
we have

(409)

which is the standard form of the equation of the parabola.

Again, suppose the curve to be a hyperbola, and that one of the

axes of co-ordinates is parallel to an asymptote, in this case y
will be constant, and so will the ratio - b : 2 (hy + g}. Hence
we have the following theorem :

The intercepts made ly parallel chords of a hyperlola on a

line parallel to an asymptote are proportional to the rectangles con-

tained ly the segments of the chords.
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Exercises on the General Equation.

1 . Prove that five conditions are sufficient to determine a conic.

2. Transform the following curves to their centres :

1. 4z2 - xy + 6y
2 + lOx - 12y +13 = 0.

2. xy + iax - 2by = 0.

B
3

. Sz? - 2xy - 3y
2 + 6x - 9y = 0.

3. What curves are represented by the equations

1. V# -f a Vy + b = *Ja + b;

2. (*+ l)-
1

+(y + 2)-
= 2;

7T

3. cos-1^ -f cos-V = - ?
3

4. Find the equation of the asymptotes of the hyperbola

3z2 - 4zy - 5y
2 + 2* - 4y + 6 = 0.

5. Prove that the equation of the chord of the conic

axz + 2hxy + fy
2 + Igx + 2/y + c = 0,

which passes through the origin and is bisected at that point, is gx + fy = 0.

6. The axes of a central conic are its maximum and minimum semi-

diameters.

For the conic referred to the centre, viz.

ax* + 2hxy + by
2
-f A[C = 0,

will meet the circle a;
2 + y

2 - r2 = 0, where it meets the line pair

(ar
2 + A/ (7) x

2 + Wkxy + (br
2 + A/CO f =

>

and it is evident when these lines coincide that r has its maximum or mini-

mum value, and forming the discriminant we get

A(a+_J) A^ =
GZ

^
C3

which proves the proposition. (See equation (387).)

7. If the line joining any fixed point to a variable point P of a conic

S meet a fixed line in the point Q, prove, if B be the harmonic conjugate

of P with respect to and Q, that the locus of jR is a conic.
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8. Find the locus of the centre of a conic passing through four given

points. If S, S' be two fixed conies passing through the given points, then

S + kS' is the most general equation of a conic passing through them, and

the centre of this is the intersection of the diameters

Si + Mi' =
;
S2 + M2

' = 0, (See 139.)

where Si, 82, &c., are the derivatives with respect to x and y. Hence,

eliminating k, the required locus is

Si Sz - Si S^ = 0. (410)

Thus, if one of the three pairs of lines passing through the four points he

taken as axes, another pair may he written

\ n

These pairs heing taken for 8, S' respectively, the required locus will he

This conic is called the nine-point conic of the quadrangle of the four fixed

points. For it passes through the middle points of its six sides and through
the three diagonal points. These nine points are the centres of special

conies.

9. "With the same notation, find the value of k, in order that S + M' may
be an equilateral hyperbola.

p cos a

10. The centre of the nine-point conic is the mean centre of the four

summits of the quadrangle.

11. If the harmonic mean between the rectangles contained by the seg-

ments of two perpendicular chords of a conic be given, the locus of their

point of intersection is a conic.

12. Prove that through four points can be drawn two parabolas. Con-

struct their diameters.

13. Find the equation of the chord joining the points x'y', x"y" on the

conic 8 = axz + Ihxy + If + Igx + 2fy + c = 0.
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The conic

S' = a x-x'

evidently passes through x'y', x"y" .

chord.

-x") + h{(x- x')(y-y") + (x
-

Hence S S' = is the required

14. If a conic passes through four fixed points, the diameter conjugate to

a given direction passes through a fixed point. (LAMB.)

15. In the same case the polars of a fixed point are concurrent.

16. If a variable conic pass through three fixed points, and have an

asymptote parallel to a given line, the locus of its centre is a parabola. If it

passes through two given points, and have its asymptotes parallel to two

given lines, the locus of its centre is a right line.

17. If two points A, B he such that the polar of A passes through _#,

the polar of B passes through A.

18. To describe a conic section (x. ) through five given points A,,C, D, E,

Join B, D, C, E. Through A
draw AG parallel to BD, cutting

the conic in G, and AK parallel

to CE, cutting BD in H. Then

BI . ID : CI . IE : : BH . HD
: AH . HK; therefore JSTis a given

point. In like manner, G is a given

point. Hence, bisecting AK in L,

CE in N, AG in P, and BD in Q,

0, the point of intersection of LN
and PQ is given. Again ( 155), PG* : QDZ

: : OF2 - OP2
: OF2 - OQ 2

;

hence Fis a given point. In like manner IT" is a given point, and 0V, OQ
are semiconjugate axes. Hence, &c.



CHAPTER V.

THE PARABOLA.

158. DBF. i. Being given in position a point 8 and a line

NN1

. The locus of a variable point

P whose distance SPfrom S is equal

to its perpendicular distance PN
from NN'i is called A PARABOLA.

It will be seen subsequently

that this definition agrees with

that already given in p. 165.

ii. The point S is catted the

roctrs, and the line JV7V' the DIREC-

TEIX.

m. Iffrom S we draw SO perpendicular to NN', and bisect

it in A, then, since OA = AS, the point A (Del i.) is on the

parabola, and is called the VEBTEX.

iv. If the line AS be produced indefinitely in the direction AX,
the whole line produced is called the AXIS.

159. To find the equation of the parabola.

Let the vertex A be taken as origin, and AX and AT per-

pendicular to it as axes. Then denoting OA = AS by a, and

the co-ordinates of any point P in the curve by x, y, we have

(Def. i.) SP= PN] but PN= OM= OA + AM= a + x; therefore

SP = a + x.

Again, SM = AM- AS - x -
a, and PM= y.

Hence, from the right-angled triangle SMP, we have

(x
-

a}
2 + y*

= (a + xj ;
therefore y*

= 4az, (413)
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which is the standard form of the equation of the parabola.

Compare 157, equation (409). From the equation of the

parabola, we see that two values of y correspond to each value

of x
;
and that these are equal in magnitude, but contrary signs.

Hence, if PM be produced, it will meet the curve on the other

side of the axis in a point P', such that PM = HP'. Hence the

axis of the parabola is an axis of symmetry of the figure.

v. The double ordinate LL' through the focus is called the

LA.TUS BECTTJM of the parabola.

Cor. The latus rectum = 4a
;
for 8I> = LR = 08 = 2a

;
there-

fore LL' = 40.

Ex. 1. If through a fixed point 0, a line OB be drawn meeting a fixed

line AB in B, then, if BP be perpendicular to AB and OP to OB, the

locus of P is a parabola. For, draw OM parallel to AB, then we have

OM2 = BM . MP, or y
2 = ax.

Ex. 2. The tangent at a point E of a circle meets a fixed diameter CD

F

in F, and F is joined to the extremities of the diameter perpendicular to CD,
the locus of the intersection of AF with the perpendicular from E to CD is

a parabola. (BROCARD.)

Let x'y be the point, the equation of EF is xx' + yy' = r2 . Hence

OF =
r*{y'; therefore the equation of AF is yy'/r* x\r =

1, and the

equation of HP is y y' = 0. Hence eliminating y', we get y
2 = r (r + x),

or making A the origin, y
z = rx.
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160. The co-ordinates of a point on the parabola can le expressed

in terms of a single variable.

For, writing the equation in the form 2# . 20 = y
z
,

it is a

special case of LM=?, a form in which each of the three conies

may he written ;
and we may put 2x = y tan <, 20 = y cot <, or

which is the same thing, y = 2a tan <, x = a tan2
<f>.

Hence the

co-ordinates of a point on the parahola may be denoted by

a tan2
<, 2 tan

<f>.
We shall for shortness call it the point <j>,

and

<J>
the INTEINSIC ANGLE of the point.

Cor. 1 . Since PS = a + z = a + a tan2
<j>
= a sec2 <, the dis-

tance of the point < from the focus is a sec2 <.

Cor. 2. The angle ASP is equal to twice the intrinsic angle

of P.

MS a tan2
<b - a

For cos MSP = -^ = --|-r- = - cos 2<
;SP a sec2

therefore ASP =
2<j>.

161. To find the equation of the chord passing through two

points xfy', x"y" on the paralola.

Let the intrinsic angles of the points be
</>', 0"; then the

required equation is ( 31, Ex. 3, 4),

2x - (tan <' + tan <") y + 2a tan <' tan <" =
; (414)

or, putting for tan <', tan <f>" their values in terms y', y",

y'y". (415)

EXERCISES.

1 . If a chord of a parabola cut the axis in a fixed point, the rectangle

contained by the tangents of the intrinsic angles of its extremities i

constant.

Because if we put x = AO, y = 0, in equation (414), we get

OA
tan <p . tan

<f>
= -

.



176 The Parabola.

2. If PM, PM' be the ordinates of the points P, P', and OQ the ordi-

nate of 0, PM. P'M' = - 0Q2
.

For, from equation (414) we get

(2o tan
<J>') (2a tan <f>")

= -4a.OA = - OQ*.

3. In the same case, AM. AM' = AO*.

4. The direction tangent of PP is

2/ (tan <f>' + tan $>") . (See equation (414).)

Hence, if a chord of a parabola be parallel to a

fixed line, the sum of the tangents of the intrinsic

angles of its extremities is constant.

6. If PP cut the axis of y in a fixed point Q, from equation (415) we get

cot
<f>' -f cot <f>"

= 1a\AQ,. Hence, if through a fixed point on the tangent at

the vertex of a parabola any secant bo drawn, the sum of the cotangents of

the intrinsic angles of its points of intersection with the parabola is constant.

6. If 5, 8' and g be the distances of the extremities of a focal chord and

of the focus from any line, p, p the focal vectors of the extremities of the

chord, prove

8/p + S'/p'
=

g\a.

7. AA', BB' are parallel chords of a parabola, A'B is joined, and B'G is

a chord parallel to A'B, prove that the tangent at B is parallel to the

chord AC.

162. To find the equation of the tangent to the parabola at the

point x'y'.

In equation (414), suppose the points <j>',
<" become con-

secutive, then their joining chord

becomes a tangent, viz.

#- y tan <' + a tan2 <' = <), (416)

or, putting #' = a tan2
<', y'

= 2a

tan <',

yy' = 2a(x + z'). (417)

Cor. 1. If PT be the tangent,

putting y =
0, we get from (417),

x = - xf
;

N
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but when y =
0, x = AT. Hence, since x' = AM, we have

AT = - AM; therefore TA = AM. Hence TM is bisected in A.

DEF. The line MT, intercepted on the axis between the- ordi-

nate and the tangent, is called the sub-tangent. Hence in the

parabola the subtangent is bisected at the vertex.

Cor. 2. The axis of y is the tangent at the vertex of the

parabola ;
for if in (417) we put x' = 0, y'

= 0, we get x - 0.

Cor. 3. The equation (416) may be written y x cot <'

+ a tan <', from which it is seen that <' is the angle PS Y,

which the tangent PT at P makes with A Y, the tangent at A.

Hence we have the following theorem :

The intrinsic angle of any point of a parabola is equal to the

angle which the tangent at that point makes with the tangent at the

vertex.

If s denote the length of an arc of any curve measured from some fixed

point A to a variable point P ; <p the inclination of the tangent at the latter

point to the tangent at the fixed extremity A.
; then the equation expressing

the relation between s and < has been by DR. WHEWELL (Phil. Trans.,

vol. viii., p. 659) termed the intrinsic equation of the curve, a nomenclature

which has been adopted by mathematicians. It was this that suggested

the propriety of calling < the intrinsic angle.

160, Cor. I};

hence TS = SP; therefore the angle 8PT = STP = TPN.
Hence PT bisects the angle SPN.

DEF. If from a fixed point in the plane of a curve perpendi-

culars be let fall on its tangents, the locus of their feet is called

the first positive pedal of the curve with respect to the point. Also

the pedal of the first positive pedal is called the second positive

pedal, fyc. Conversely, the curve itself is called, in relation to a

positive pedal of any order, the negative pedal of the same order.

Cor. 5. If PT meet the tangent at the vertex in It, since

TA = AM, TB = P; hence the triangles TBS, PBS are

equal in every respect ;
therefore the angle PBS is right, and

N
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SB is perpendicular to the tangent. Hence the pedal of a

parabola with respect to the focus is the tangent at the vertex.

Cor. 6. If p denote the length of the perpendicular from S

p =V a (a + #').

For since the angle ASS is equal to <', we have

AS ^ SB = cos <', that is - = cos <'.

P

Hence p = a sec <' =Va (a + #'). (418)

Or thus : the triangles ASS, SBP are equiangular ;
hence

AS : SS : : SS : SP
;
that is, a : p : : p : a + x'.

Cor. 7. The equation of any tangent to a parabola may be

written in the form

y = mx + afm, (419)

for equation (416) will reduce to this form if we put m = cot <'.

EXERCISES.

1 . The first negative pedal of a right line is a parabola.

2. The circle described about the triangle formed by three tangents to a

parabola passes through the focus ; for the feet of perpendiculars from the

focus on these tangents are collinear.

3. The polar reciprocal of a parabola with respect to the focus is a circle ;

for the reciprocal is the inverse of the pedal with respect to the focus,

which (Cor. 5) is a right line.

4. The polar reciprocal of a circle with respect to a point in its circum-

ference is a parabola.

5. Given four right lines, a parabola can be described to touch them.

The focus is the point common to the circumcircles of the triangles formed

by the lines. Hence, being given a quadrilateral, there ezists a point

whose projections on the sides are collinear.

6. The orthocentre of the triangle formed by any three tangents to a

parabola is a point on the directrix.
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7. Find the co-ordinates of the intersection of tangents at the points

<j>'}
<".

Ans. x = a tan
</>'

tan <j>", y = a (tan </>' + tan <"). (420)

8. If tan
<J>" bear a given ratio to tan

<f>',
the envelope of the chord

joining the points cf>', <jt"
is a parahola.

9. The area of the triangle formed hy three tangents to a parahola is

half the area of the triangle formed hy joining the points of contact.

(Compare J 9, Exs. 6, 7.)

10. If two points on the axis of a parabola be equidistant from the

focus, the difference of the squares of their distances from any tangent is

independent of its position. (BROCARD.)

11. If a triangle be formed by two tangents to a parabola and their

chord of contact, prove that the symmedian line of this triangle, through

the vertex, passes through the focus.

12. In the same case, prove that the chord of the circumcircle through

the vertex and focus is bisected at the focus.

163. To find the locus of the middle points of a system of

parallel chords.

Let PP' (see fig., 161, Ex. 2) be one of the chords, m its

direction tangent ;
then m =

4a/(y' + y"}. (See equation (415).)

Again, if y denote the ordinate of the middle point of PP,
we have

therefore y = 2a/m ;

or, putting m = tan 6,

y = 2acotO. (422)

Hence the locus of the middle points of a system of parallel

chords of a parabola is a line parallel to the axis.

DEF. A bisector of a system of parallel chords is called a

diameter.

Cor. 1 . The tangent at the end of a diameter is parallel to

the chords which the diameter bisects; for the tangent is a

limiting case of a chord of the system.

w 2
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Or thus :

Let sty' be the point where the diameter y = 2a cot
</>

meets

the curve. Hence y'
= 2a cot 0, and since the tangent at

dy' is

W ' = 2 (*+*'), (162)
we have y = tan (x + #'),

which is parallel to the chords, since its direction tangent is

tan0.

Cor. 2. The tangents at the extremities of any chord meet

on the diameter which hisects that chord
;
for the diameter

which hisects a system of chords parallel to the join of
</>', <",

is y = a (tan <' + tan <") (equation (421)), which passes

through the intersection of tangents at the points <', $". (See

equation (420).)

Cor. 3. The diameter through the intersection of two tan-

gents hisects their chord of contact.

Cor. 4. If he the intrinsic angle of the point wnere the

diameter which hisects the join of <', <" meets the curve,

tan < = (tan <' + tan <"). (423)

Cor. 5. If 6 denote the direction angle of the tangent at

4, + $ =
7r/2. ( 162, Cor. 3.) (424)

EXERCISES.

1. The distance of the focus from the intersection of two tangents is

a mean proportional between the focal vectors of

the points of contact.

T
For if <', 0" denote the points of contact, p', p",

their focal vectors, we have
( 160, Cor. 1),

pV
p'p" = a2 sec2

</>'
sec2 4>".

Ar
Again, the co-ordinates of T are a tan

<f>'
tan <",

a(tan<f>' -f tan<j>"). Hence the square of the dis-

tance of this point from S, whose co-ordinates are

a, is
7 sec2

</>'
sec2 ^>". Hence

(425)
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2. If T be the intersection of tangents at
<j>', <f>",

A the vertex, S the

focus, the angle

AST=<{>' + <t>". (426)

For, substituting the co-ordinates of T and S in the equation

V
~

which gives the direction tangent of the line through two points, we get

teaiXST =
tan

<f>'
-f tan <J>" Hence tan AST =

tan 0' + tan q>"

tan $'. tan <" 1
'

1 tan <' tan <"'

3. Since ASF'=W, ASP' = 1$' ( 160, Cbr. 2), AST = %(ASP'
+ ASP"). Hence ST bisects the angle P'SP".

4. The triangles P'ST, TSP" are directly similar (Exs. 1 and 3).

5. The angle P'TP" is the supplement of half P'SP".

6. If FT, P"T, be two tangents,

TM the diameter through T, meeting

the chord FP" in M, TM is bisected

by the curve.

For, draw the tangent AQ. This is

parallel to FP"; and since the dia-

meter through Q bisects AF' (Cor. 3),

we have AN = NP". Hence TQ
= QP", and therefore TA = AM.

7. Find the co-ordinates of the

point A.

tand>"2

8.

9.
tan $' + tan 0'

=
a(tan<f>' + tan<"). (427)

(428)

,"\2)

-) j-
(429)

10. If a quadrilateral circumscribe a parabola, the rectangle contained

by the distances of the extremities of any of its three diagonals from the

focus is equal to the rectangle contained by the distances from the focus of

the extremities of either of the remaining diagonals.

11. If ABC\>Q a triangle circumscribed to a parabola, A'B'C' the points

of contact. Then ABIBG' = B'C\CA.
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For if yi, yz, 1/3 be the ordinates of A', B', C', those of A, B, C are

(y2 + ys) / 2, (y, + yi ) / 2, (y, + ya ) /
2.

Hence projecting on the tangent at the vertex of the parahola we have

AB (ys + yQ/2 - (y2 + y3)/2 yi
-

yz

164. To ym<Z Me equation of the parabola referred to any

diameter and the tangent at its vertex as

axes.

Let P'P" be a double ordinate to the

diameter AM
;
A Y the tangent at A

;

then -4F ( 163, Cor. 1) is parallel to

P'P". Let <', <" be the intrinsic angles

of the points P', P"; then ( 5)

P'P"2 = 2

therefore

tan ^>"

2 2

= 4^5 . AM,
( 163, Exs. 8, 9.)

Therefore, denoting AS by a', ^i^f, J/P" by #, y, we have

y
2
=4a'#, (430)

which is the required equation, and identical in form with the

old one, y
2 = 4ax.

Cor. 1. If the angle between the axes AX, ^4Fbe denoted

by 0, and if < be the intrinsic angle of the point A, we have,

since

+
<t>
=

7T/2, cosec2 = sec2<
;

but AS = a sec2<
;

therefore AS = a cosec2
0. (431)

Cor. 2. The equation of the tangent to the parabola at any

point xfy', referred to the new axes AX, AY, is the same as for

rectangular axes, viz.

yy' = 1a(x + x'\
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EXERCISES.

1. From any external point hk can be drawn two tangents to a parabola.

For the tangent at a point x'y' of the parabola is yy' = 2a (x + x') : if this

passes through the point hk, \ve have

ky' = la (h + x') ;

but . y'
z '= 4ax'. . -.

Hence y'
z -

Iky' + 4ah = 0. (432)

This quadratic, giving two values of y', proves the proposition.

2. Find the equation of the chord of contact of tangents from hk.

By removing the accents from equation (432), we get

y
2 - Zky + 4A = 0.

This denotes two lines parallel to the axis of x, and passing through the

points of contact
;
and since the parabola is t/

2 4a# = 0, subtracting and

dividing by 2, we get the required equation

20(s-f h)-ky = 0. (433)

3. If the chord of contact of two tangents pass through a given point hk,

the locus of their intersection is a right line.

For if oj8 be the point of intersection of the tangents, the chord of con-

tact is la (x + a) Py =
; and since this passes through hk, we have

2 (h + a) &k = 0, or, putting xy for a,
2 (x + h)

- ky = 0,

an equation which is the same in form as (433).

DBF. The line 1a(x + h) ky = is called the polar of the point hk.

4. If there be two points A, B, and if the polar of A passes through S,

the polar of passes through A.

5. The intercept made on the axis by any two lines is equal to the diffe-

rence of the abscissae of the poles of these lines.

6. The polar of the focus is the directrix.

7. If any chord pass through the focus, the tangents at the extremities

are at right angles.

For in the equation of the chord, viz. 2# (tan <f> + tan $") y +
2a tan <>' tan $" = 0, substitute the co-ordinates of the focus, and we get

tan <p'
tan

<f>"
= 1.

8. Any pair of opposite sides of a quadrangle whose summits are coneyclic

points on a parabola are antiparallel with respect to the axis.

9. The difference between the intrinsic angles of two points being given,

to find the locus of the intersection of tangents at these points.
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(tan <f>' + tan <f>")
2 - 4 tan 0' tan 0"

Let <t> - d> = 8 ; then tan2 8 = ^ ; and
' "^

i_
x y

substituting -,
- for tan 0' . tan 0", tan 0' + tan 0", respectively, we get

(y
2 -

4az) = (a + x)
z tan25, which is the required locus. (434)

Cor. The isoptic curve (that is the locus of the intersection of tangents

making a given angle) of a para bl is a hyperbola.

10. Find the co-ordinates of the point of intersection of the lines f P",

8T( 163, Ex. 1, fig.).

sin20" y sin 20' -f sin 20"x sm2

Ans. - = ^,
a 008^0 -f

(435)
a cos20' + cos20"

DBF. The normal at any point of a plane curve is the perpendicular to

the tangent at that point.

165. To find the equation of the normal at the point x'y'.

Since the equation of the tan-

gent is

*ji}j 2fli^" "\- y^ "\

the equation of the normal is

y-y' = - (#-#') (
436

)

Cor. 1 . If in the equation of

the normal we put y =
0, we get

x - x' = 2a; but in this case x = AN, x' = AM. Hence

x - x1 = MN; therefore MN= 2a.

DEF. The line MN intercepted on the axis between the ordi-

nate and the normal is called the SUBNORMAL. Hence in the

parabola the subnormal is constant.

Cor. 2. Since SM = x' - a, and MN =
20, we have &N= x'

Cor. 3. From any point a/J can be drawn three normals

to a parabola.

For if the normal (436) passes through a/3, we get, after sub-

stituting for x'y' their values in terms of the intrinsic angle,

a tan3
<
-

(a
-

20) tan <
-

y8
=

0, (437)

a cubic giving three values for tan <.
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Cor. 4. Since the cubic (437) wants its second term, the

sum of the three values of tan </>
must be zero. Hence, if from

any point three normals be drawn to a parabola, the sum of the

ordinates of their feet is zero. Hence the locus of the mean

centre of the feet of the normals is the axis.

JOACHIMSTHAL'S CIECLE.

166. This is the circle through the feet of the three normals that

can be drawn from a given point aft to a given parabola.

Its equation is

a? + f -
(a + 2a)a?

-
(3/2 . y = 0. (438)

For if we eliminate x between this and y
z = 4ax, and put

y = 20tan< in the result, we get (437).

Cor. \. Joachimsthal' s Circle, having no absolute term,

passes through the origin. Hence, if from any point three nor-

mals be drawn to a parabola, their feet and the vertex are con-

cyclic.

Cor. 2. If a, j8 be the co-ordinates of the point whence the

normals are drawn, the co-ordinates of the centre of Joachim-

sthal's Circle are

(a + 2a)/2, 0/4. (439)

CIRCLE OP CURVATTTRE.

167. DEP. The circle through three consecutive points of a

curve is called its Circle of osculation or Curvature, and its centre

and radius the centre, and the radius, of curvature at the point.

If t, t', t" be the tangents of the intrinsic angles of three

points of a parabola, the co-ordinates of the circumcentre of the

triangle formed by the tangents at these points are

x =
a
-

(t
2 + t

n + t"z + it' + ft" + t"t + 4),
Jt

y = - a
-(t + t'} (f + t"} (t" + t). (Equation (98).)
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Hence, supposing the three points to be consecutive, we get the

co-ordinates of the centre of curvature, viz.

* = a (3P + 2), y = - 2at3
. (440)

Now, let AE he the tangent at the vertex of the parahola,

NR the directrix. Then, if be the centre of curvature at P,

produce OP to meet the directrix in N, and draw OE parallel

to the axis, to meet AJSin E and the ordinate PMproduced in F.

Then we have JEO = a (Si!
2 + 2), and EF = AM = at*. Hence

FO = 2a (1 + P) = 2a sec2< = 28P = 2PD. Hence OP = 2PN;
that is, the radius of curvature at anypoint P of a parabola is equal

to twice the intercept on the normal between the point P and the

directrix.

O

Cor. 1. The radius of curvature = 2sec3<. (441)

For P2V = P sec < = SP sec < = a sec3
<, and OP = 2PN.

Cor. 2. If we form the equation of the circle whose centre

is and radius = la sec 3
<, we have the circle of curvature,

Hence circle of curvature is

(442)
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or if x'y' be the point of contact,

2x'i/'
x2 + f- 2x (3*' + 20) +

'

. y - 3x'2 = 0. (443)a

Cor. 3. Through any point can be drawn four circles oscu-

lating a given parabola.

For if the point be h, Tc : substituting for x, y in (443), and

omitting accents, their points of contact lie on the conic

3axz + 6ahx -
vkxy + 4a?h -a(h* + 2

.)
=

0, (444)

but this intersects the parabola in four points.

Cor. 4. When the point Tik is on the curve, the circle oscu-

lating at hJc counts for one, and three others can be described

osculating elsewhere.

EVOLTJTE OF PAKA.BOLA.

168. DBF. The locus of the centres of curvature for all the

points ofany curve is called its evolute.

If we eliminate t between the equations (440), we get

4(x- 20)
3 = 27ay

2
, (445)

which is the evolute of the parabola.

Cor. Joachimsthal's Circle touches the parabola when two

of the three normals coincide
; then, if xy be the centre of

curvature, and aft of Joachimsthal's Circle, we have, from

equation (439), 2a = x + 2a, 4ft
= -

y. Hence, from (445),

we get
2 (a

-
20)

3 = 270/3
2
, (446)

which is the locus of the centres of the Joachimsthal's circles

that touch the parabola.

EXERCISES.

1. If Pi, PZ, PS be three points whose normals are concurrent, the line

through the vertex parallel to any side of the triangle PiP2Ps will meet

the parabola again in the symmetrique of the opposite vertex.

2. The lines through Pand^ (fig., 167) antiparallel with respect to

the axis to the tangent at P, will meet the parabola again in the points
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where the osculating and the Joachimsthal's circles at P respectively

meet it.

3. The hyperbola xy (x'
- 2a)y - 2ay' = (447)

passes through the feet of the normals from x'y''.

4. The envelope of the chords of osculation of a parabola is the parabola

y* + 12ax = 0. (448)

5. If a Joachimsthal's circle touch a parabola at x'y', the chord joining

this to the intersection, different from the vertex, is xjx' + yjy' = 2, and its

envelope is

y2 + 32ax = 0. (449)

6. If x'y' be the co-ordinates of the point of intersection T of two tan-

gents to a parabola, x"y" the co-ordinates of N, the intersection of

normals
x" = la - x' + y"*la, y" = -

x'y'fa. (450)

For if Pi, TZ he the points of contact on the parabola, the circle on TN
as diameter passes through PI, PZ, and also the Joachimsthal circle of N.

Hence PiPz is the radical axis of

(x
-

x')(x
-

x") + (y
-

y')(y
-

y") = 0,

and xt + y
z
-(x"+2a)x-^-/- = 0.

i

Hence the equation of PiPz is x (x' 2a) + y (y"l% + y') x'x" y'y" = ;

but PiPz is the polar of T with respect to the parabola. Hence its equation

is yy' = 2a(x + x') ; and comparing coefficients, &c.

7. Two normals at right angles intersect on the parabola .

y
z = a(x-3a). (451)

8. Find the locus of the intersection of normals at the extremities of a

chord which passes through a given point.

Since the chord passes through a given point, the intersection of the

tangents will be on the polar of the point. Hence eliminating x'y' between

this polar and equation (450), we get the required locus.

9. If normals at x\y\, xzyt, x^yz be concurrent,

(x\
-

xz)lya + (xz
-

Xz)lyi + (xs
-

xi)jy2 = 0. (452)

10. If the normal at
</>
meet the parabola again at

<j>',
then

tan 4> (tan <f> + tan <') + 2 = 0. (453)

11. If x'y' be the co-ordinates of the point of osculation, the co-ordinates

of the other extremity of the chord of osculation are

9^, - 3/. (454)
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12. If the osculating circle at Pmeet the parabola again at P', and the

osculating circle at P1 meet it again at P", the envelope of PP" is the

parabola
25y

2 = 360* ; (455)

and the locus of the centroid of the triangle P'PP" is the parabola

39y
2 = 28az. (456)

13. Show that from any point of a parabola, besides the normal [at the

point, two others can be drawn ;
find the envelope of the chord joining their

feet and the locus of its pole.

169. To find the polar equation of the parabola, the focus leing

pole.

Let S be the focus, P any point in

the parabola ;
then denoting the angle

OSP (in Astronomy called the true

anomaly) by 6, and SP by p. Since

SP = PN = OM= 2a - SM, we have

p = la -
p cos ;

therefore

^21/3 f /t C*7N= -
n = a sec -ku. ( 4o / )P

1 + cos

which is the required equation.

Cor. 1 . If PS produced meet the curve again in P',

PP'=4acosec2
0. (458)

Cor. 2. PS . SP' = PP' . a. (459)

Cor. 3. The polar equation of the tangent at the point

whose angular co-ordinate is a, is

= cos 6 + cos (0
-

a). (460)
P

For this will be satisfied if we make 6 = a
;
and for other values

of 0, the value of p derived from this equation is greater than

the corresponding value obtained from the equation of the curve

Hence, except at the point a, the line (460) does not meet the

curve.
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Cor. 4. The polar equation of the normal at the point a is

(461)

for if we make =
a, we get p = a sec2 a. Hence the line

passes through the point a. Again, if we make 6 =
TT, we get

the same value for p. Now, the focal vector of the foot of the

normal is equal to that of the point of contact ( 165, Cor. 2).

Hence the line (461) passes through two points on the normal,

and therefore must coincide with it.

Cor. 5. The intrinsic angle at any point of a parahola is half

the polar angle.

Cor. 6. The polar co-ordinates of the intersection of tan-

gents at the points whose intrinsic angles are <', <f>", are

p = a sec
</>'

sec <", = <' + <". (462)

EXERCISES.

1. Find the polar co-ordinates of the intersection of tangents at the points

whose angular co-ordinates are (a + 0), (a
-

).

2. The equation of the chord joining the points (a + /3), (a
-

/3) is

n

= cos + sec /3 cos (9
-

a). (463)
P

3. If
<j>i, 02, 03 be the intrinsic angles of three points on a parabola, the

circumcircle of the triangle formed by the tangents at 0i, 0j, <f>3
is

p cos 0i cos
<f>2 cos #3 = a cos (6

-
0i + 2 + 0s), (464)

make use of (462). (RITCHIE.)

4. If 0|, 02, 03, 04 be the circumcentres of the four triangles formed by
the tangents at

<f>\, fy, $3, <fn the points 0\ t 02, 0s,. 04 are on the circle

passing through the focus

1p COS <p\ COS 02 COS
<f>3

COS 04 = U COS (6
-

<f>\ + </>2 + $3 + <<) (465)

(Ibid.)
The co-ordinates of 04 are

a
p = - sec 0i sec 3 sec 3 .

m
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5. If 0i, 02, <f>3, 04, 05 be the intrinsic angles of five points, O'i, O'z, O's,

(ft, 0'$ the centres of five circles determined, as in Ex. 4, by the tangents

at 0i, 02, &c., taken four by four, the points 0'\, O'z, &c., are on the

circle

4p COS 01 COS 02 COS 03 COS 04 COS 05= COS (8 01 + 02 + 03 +01 + 0s). (466)

(Ibid.)

6. Tangents at two points P, P' meet the axis in the points T, T'
; -prove

TT'= SP-SP'.

1. The polar equation of the circle which touches the parabola at the

point whose intrinsic angle is a is

p cos2 a = a cos (0
-

So). (467)

8. If ?i, ?2, be the lengths of two tangents to a parabola, their con-

tained angle, then hz + 1-? + 2V2 cos = (^2Sin<?
>
)
l

-
(468)

0*

9. If p, p' be the radii of curvature at the extremities of a focal chord,

then

p-f + p'-i
=

(2a)-f. (469)

170. To ym<? the length of a line drawn from a given point in a

given direction to meet the parabola.

Let be the given point, OP the given direction, and let the

rectangular co-ordinates of 0, P be x'y', xy respectively ;
then

denoting OP by p, we have P

x = x' + p cos 0, y =
y'+ p sin 0.

Substituting these values in the equation

/
2 = 4ax, we get

p
2 sin7 6 + 2 (y

1
sin - 2a cos 0)p

+ y'
2 - 4ax' = 0, (470)

a quadratic whose roots are the values

required. If the roots of this equation

be pu p2 ,
and if OP meet the curve again in P', we may

put OP =
pi, 0P'=p2 .

Cor. 1. If PJ' be bisected in 0, we have pi = -
p2 ,

and the
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co-efficient of the second term in (470) is zero. Hence, if be

constant and y' variable, we see that the locus of the middle

points of a system of parallel chords is the line y = 20 cot Q

(Comp. $ 163.) (470)

Cor. 2. The product of the roots of equation (470) is

(y
- 4#') cosec' 0. Hence

OP. OP' = (y
1* -

4ax') cosec2
0.

Similarly, if another chord QOJ be drawn through 0, making
an angle 0' with the axis, we have

OQ.OQ'= (y
1* -

40*') cosec2 &.

Hence
OP.OP': OQ.OQ':: cosec2

: cosec2 0'.

EXERCISES.

1. If AX, A'X' be two diameters of a parabola, 0, 0' any two points in

them, PP, QQ' parallel chords through 0, 0' respectively,

AO : A'O' : : OP. OP : O'Q . O'Q'.

2. If TE, TVbe two tangents, S the focus,

TIP : TV* ::SR: 8V.

3. If e, c be the lengths of focal chords parallel respectively to TR, TV,

TIP : TV* : : e : c'.

4. If a chord PP through the point of a parabola make an angle ty

with the tangent at <p, and an angle 6 with

the axis p
_ PP cos

</>
sin2

Let PT, PT be the tangents at PP ; and

since the angle MTP is the complement of

4>, we have

sin
J/

: cos </>
: : MT (or 2AM)

: MP;

therefore MP sin ^ = 2AM cos <p.

Again, if S be the focus,

4AS. AM = MP*; (164.)

therefore 2AS . sin ^ = MP cos <p.
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But AS=acosec*0. ( 164, Cor. I.)

Pf cos . sin2 9 .

Hence sm
<|/
= . (471)4#

5. If through any point <p on a parabola be drawn two chords making

angles ^, if'
with the tangent at $ ; then, if c, <! be their lengths, 0, 0' .their

direction angles,
sin ty

: sin
<J/

: : c sin2 Q : c' sin2 0'. (472)

171. If X, /*,
v denote the perpendiculars from the summits

of a circumscribed triangle on any tangent to a parabola, and if

<'
, <", </>'"

be the points of contact of its sides,

tan <' - tan </>" tan <fr"
- tan <'" tan <"' - tan <'

X /A V

(473)

for the equation of any tangent is # - y tan < + a tan2
< =

;

and X being the perpendicular on this from the intersection of

tangents at <', <", we have

X = cos < (tan $ - tan <') (tan < - tan <") ;

therefore 11 1

X a cos
tf> (tan </>

- tan
<j>'

tan
<j>

tan <")
'

with similar values for

tan <" tan <j>"' tan <"' - tan
<j>'

U, V '

and these added vanish identically. Hence the proposition is

proved.

Cor. 1. If y', y", y'" denote the ordinates of the points of

contact of the parabola with the sides of the triangle,

v" v'" v'" v
f

y y y __ y
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Cor. 2. In like manner, if a polygon of any number of sides

be circumscribed to a parabola,

y'-y" y"-y'" y'"-y"" l) - y>y J- + I *- + I y
+ . . .

y L = 0. (475)\
fj.

v

Cor. 3. If the co-ordinates of the summits be a'
ft', a"ft", &c.,

it is easy to see that

1 4aa! = a (tan <f>'
- tan <").

But ft'*
- 4aa' is the power of the point a'ft' with respect to the

parabola. Hence \/ft'
z - 4aaf may be denoted by */S'. Hence

we have

+ &c. = 0, (476)A p.

for any circumscribed polygon.

Cor. 4. If a circumscribed polygon consist of an odd number

of sides, y'y", &c., it can be expressed in terms of the ordinates

of its summits
; thus, in the case of a triangle, if

ft', ft", &c., be

the ordinates of the summits, we get, instead of (474), the

equation

Cor. 5. The perpendiculars from the points ^/, <f>" on the

tangent at
<f>

are

a cos
<f> (tan <f>

- tan
<f>' )

2
,

a cos < (tan $ - tan <"/ ;

and the perpendicular from the point of intersection of tangents

is

a cos
<f> (tan <f>

- tan <')(tan <f>
- tan <").

Hence we have the following theorem The perpendicular from
an external point R on any tangent to the parabola is a mean

proportional between the perpendiculars on the same tangent from
the points where the polar ofR meets the parabola.

Cor. 6. From Cor. 5 we have immediately the following

theorem : If a quadrilateral circumscribe a parabola, the product



The Parabola. 195

of the perpendicularsfrom the extremities of one ofits three diagonals

on any tangent is equal to the product of the perpendiculars on

the same tangent from the extremities of either of the remaining

diagonals.

Exercises on the Parabola,

1. Find the polar equation of the parahola, the vertex being the pole.

2. "What is the intrinsic angle at either extremity of the latus rectum ?

3. "What is the equation of the tangent at an extremity of the latus

rectum ?

4. AB, CD are two rectangular diameters of a circle. Through A
chord AF is drawn meeting CD in E, and through H, EK is drawn parallel

to AB meeting BFin K; prove that the locus of K is a parabola.

(BROCARD.)

5. Find the equation of the normal at the extremity of the latus rectum

6. In the figure, 169, prove that the points P', A, JVare collinear.

7. If the ordinates of three points on a parabola be in geometrical pro

gression, prove that the pole of the line joining the first and third lies

the ordinate through the second.

8. If from a point whose abscissa is a; a perpendicular be let fall on

the polar of 0, if this meet the polar in R and the axis in &,

SG = SR = x + a.

9. If two equal parabolas have a common axis, but different vertices, the

tangent to the interior, and bounded by the exterior, is bisected at the point

of contact.

10. Prove that the locus of the pole of a chord which subtends a right

angle at the point hk is

aa? - hy
t + (4

2 + 20A) x - laky + a (A
2 + &) = 0. (478)

The condition that the extremities of the chord joining the points <', <p

'

may subtend a right angle at the point hk is

(A
-

at'*) (h
-

at"*) +. (k
-

1at')(k
-

2at") = ;

and the co-ordinates of the pole of the chord are

x = at't", y = a(t' + t").

Hence eliminating t', t" we get the required equation.

o2
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11. If from any point in the line x = a' tangents be drawn to a parabola,

the product of their direction tangents is a -= a. (479)

12. Find the locus of the intersection of tangents at the points <p', </>",

if tan $' = n tan $". Am. y
1 =

(Mi + M-*)
2 ax. (480)

13. Prove that the equation of the chord whose middle point is hk is

k(y-k)=1a(x-h). (481)

14. If a chord of a parabola subtend a right angle at the vertex the locus

of its middle point is y
2 = 2a (x 4). (482)

15. The area of the triangle formed by tangents at the points <p', <f>"

and their chord of contact is

^-
(tan<f>'- tan<f>")

8
. (483)

16. If a variable circle touch a fixed circle and a fixed line, the locus of

its centre is a parabola.

17. If the difference between the ordinates of two points on a parabola be

given, the locus of the intersection of tangents at these points is an equal

parabola.

18. If two tangents to a parabola from a variable point P include an

angle 0, prove, if S be the focus, PN a perpendicular on the directrix,

PN=SPcoaO. (484)

19. The area of the triangle formed by the points <(>', $" and the focus is

a2 (tan <f>'
- tan

<J>") (1 + tan $' tan 0"). (485)

20. A triangle ABC is inscribed in a parabola whose focus is F
; show

that one of the circles touching the perpendicular bisectors of FA, FB, FC

pusses through the circumcentre of the triangle ABC. (R. A. ROBERTS.)

Let p, rj, rz, rj be the distances of a point P from F, A, B, C, respec-

tively, and afty the co-ordinates of P with respect to the triangle formed by
the perpendiculars to FA, FB, FC at their middle points. Then we have,

evidently,

p
2 - n2 = 2FA .a = 2a sec2

<J>i
. a.

Hence

Similarly,
j8 = cos2 <pz (p

2 -
)'2

2
)/2a, 7 = cos2 < 3 (p

2 - *-3
2
)/2.

Now, the equation of a circle touching afiy is

) \/a. + cos (ya) \/0 + cos J (aft) */ y = 0.
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Hence, by substitution, we get

sin (02
-

#3) cos 0i v/p
2 - n2 + sin (03

-
0i) cos $2

+ sin ((pi
-

0z) cos 03 VV - rs
2 = 0,

but if P be the circumcentre of the triangle ABC, r\ = rz = r3 ,
and we get

sin (02
-

03 )
cos 0i + sin (0s

-
0i) cos 2 + sin (0!

-
0a) cos 0s = 0,

which is true.

21. The co-ordinates of the centroid of a triangle ABC inscribed in the

parabola y
t = ax are a, ft ;

show that the co-ordinates of the centroid of the

triangle formed by the tangents at A, B, C are

(Ibid.) (486)

22. If a series of circles S, Si, S2, S3, &c., touch each other consecutively

along the axis of a parabola ; then, if the first be the circle of curvature

of the parabola at the vertex, and the others have each double contact

with the parabola, prove that their diameters are proportional to the odd

numbers 1, 3, 5, &c.

23. If p, p' be two radii vectores of a parabola from the vertex at right

angles to each other, prove pf p'l
= 16a2 (p% + p'f). (487)

24. The perpendicular from the focus on any chord of a parabola meets

the diameter which bisects that chord on the directrix.

25. If from any two points 0', 0" of a parabola perpendiculars be drawn

to the directrix, the intersection of tangents at 0', 0" is the centre of a

circle through the focus and feet of the perpendiculars.

26. If from any point P a perpendicular PQ to the axis meet the polar of

P in B, find the locus of P, if PQ, . PR be constant.

Am. A parabola.

27. Find the circle whose diameter is the intercept which y
z lax =

makes on the line y = mx + n.

Am. m2
(x? + y

2
) + 2 (mn -2a)x- 4amy + iamn + 2 = 0. (488)

28. If SL be the perpendicular from the focus of a parabola on the normal

at any point, find the locus of L.

29. If a chord of a parabola be bisected by a fixed double ordinate to the

axis, the locus of the pole of the chord is another parabola.

30. If in the equation w = z2
,
w and z denote complex variables, prove,

if z describes a right line, that w describes a parabola.
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31. Two chords from the vertex to points <)>', <f>" of a parabola make an

intercept on the directrix, which is bisected by the join of the vertex to the

intersection of tangents at <p', <j>".

32. Two fixed tangents to a parabola are cut proportionally by any
variable tangent.

33. If pi, p2, ps be the focal vectors of three points, <f>\, 2 , <f>s
of a para-

bola, then

2 sin | (pip2)/Vp!
= 0. (NEOBERG.) (489)

J (pipz)
=

(<t>i
-

<p2) and pa
= a sec2

<f>3-

Hence, by substitution we get

5 sin (fa
-

<f>2) cos #3 = 0,

which is true.

34. In the same case, prove that

a = 2pip2p3 sin (pipz) sin J (p2p3) sin J (p3pi)/2pipz sin (pip2).

(Ibid.) (490)

35. AB is a focal chord, and AM, BM are respectively parallel and

perpendicular to the axis. If N be the foot of the normal at B, MN is

perpendicular to BN. (BaocARD.)

36. Trisect an arc of a circle by means of a parabola.

37. The radical axis of two circles whose diameters are any two chords

intersecting on the axis of a parabola passes through the vertex.

38. A coaxal system of circles, having two real points of intersection,

are intersected by two chords passing through one of these points. In two

systems of points P, P, P", &c. ; Q, Q', Q" t &c., prove that the chords

PQ, PQ', P"Q", &c., are all tangents to a parabola.

39. LO, the perpendicular at the middle point L of a focal chord, meets

the axis in 0. Prove that SO, LO are the arithmetic and the geometric

means of the focal segments of the chord.

40. If v be the intercept which a tangent to a parabola makes on the axis

of y, and <p the angle it makes with it, prove that v = a tan
<f>

is a tangential

equation of the parabola.

41. If two circles touch a parabola at the ends of a focal chord, and pass

through the focus, they cut orthogonally ;
also the locus of their second

intersection is a circle.

If 2a be the direction angle of the focal chord, the polar equations of the

two circles are

p sin3 a = a sin (3a
-

0), (491)

p cos3 a = - a cos (3a
-

0). (492)
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The locus of their second point of intersection is

p*
-

ap cos e - 2a? = 0. (493)

42. Give a geometrical construction for drawing a tangent to a parabola

from an external point.

43. If R be the circumradius of a triangle ASC inscribed in a parabola,

whose side AB makes an angle 6 with the axis, prove

a = E sin . sin (9
- A) sin (0 + ). (494)

44. If pi, py, pz be the distances from the focus to the summits of a

circumscribed triangle, then, if R be the circumradius of the triangle, prove

that
4a = pipwl&. (495)

45. If ABCbe a triangle inscribed in a parabola, A', ',
C' the poles of

BC, CA, AS, respectively, prove that the circumcentres of the triangles

A'BC, AB'G, ABC', and the focus are concyclic.

^ 46. The area of the parabolic segment cut off by any chord is two-thirds

of the triangle formed by the chord and the tangents at its extremities.

/47. Prove that the angle of intersection of y
2 - 4# = 0, xz Iby = 0, is

i/&. If the normal at a point <p on a parabola meet the axis in K, the

envelope of the parallel through K to the tangent at <p is a parabola.

49. If the sum of the abscissae of two points on a parabola be given, the

locus of the intersection of the tangents at the points is a parabola.

50. If from the vertex A of a parabola a perpendicular AP be drawn to

any tangent, the locus of the point inverse to P, with respect to a circle

whose centre is A, is a parabola.

51. Find the locus of a point P, if the normals corresponding to the

tangents from P meet on the line Ax + By + 0=0. (497)

Am. Ay1 - Bxy - Aax + 2a?A + aC = 0.

52. If normals be drawn from the point x'y' to the parabola, prove that

the circumcircle of the triangle formed by the corresponding tangents is

(x
-

a) (x + x' - 2a) + y(y + y')
= 0. (498)

53. Two parabolse, S, S', have a common focus, parameter, and axes,

their vertices being on opposite sides of the focus ; show that if from any

point on S two tangents be drawn to S', the circumcircle of the triangle

formed by these tangents and their chord of contact touches S'.

(F. PUKBEK.)



200 The Parabola.

54. Two equal parabolae, S, S', have coincident axes, which have the

same direction, while the focus F of S is the vertex of S'. Show tht if P
be a point on S', the chord of S through P, which passes through F, is the

minimum chord through P.

(Ibid.)

55. If t\, <2, ts, ti denote the tangents of half the inclinations to the axis

of four concyclic tangents to a parabola, t\tz tzt^ = 1. (NEUBERG.) (499)

DBF. Four lines are said to be concyclic when they touch the same circle.

The tangent at the point # to a parabola is x y tan <p + a tan2^> = ;
if

this touch the circle (x a)
2 + (y )

2 = .R
2 the perpendicular on it from the

point o/3 is equal to R. Hence we get

a cos2
<j> /3 sin

<]>
cos

<}> + a sin2
<j>
= E cos

<f>.

Now, putting
1 - tan2 1 - *

2

we get
a*4 - 2 (JR

-
/3)

*3 + 2 (2a
-

a) P- 2 (H + 0) t + a = 0.

In this equation the roots are t\, fy, t3, U. Hence the proposition is proved.

56. If a circle osculates a parabola, and if 29 be the inclination of the

tangent at the point of osculation, and 20i, of the other common tangent,

Ian 0i = cot3 0. (Ibid.) (500)

57. The diameter of the circle inscribed in the quadrilateral formed by

concyclic tangents of a parabola is equal to the sum of the perpendiculars

from the focus on the tangents. (Ibid.)

For the equation in t gives

2 tanfl = 2 (-)/, 2 cot 9 = 2 (R + 0)/a.

Hence, by addition,

4JS/a
= 2 (cot + tan 0)

= 22 cosec 20 = 22 sec Q ;

.. 22t = 2 sec <p
= sum of perpendiculars.

68. The ordinate of the centre of the circle is the arithmetic mean of the

sum of the ordinates of the points of contact on the parabola. (Ibid.)

59. If jRi, J?2, -Rs> -#4 be the radii of curvature at the points of contact

with the parabola of concyclic tangents,

2*JZ = af(fiii+ Ife* +.83* + &*). (#*) (501)

For JRi = la sec3 <pi, equation (441).

Hence, a sec
<f>i
=

(

2
.Ri/2)i, &c.

60. If four circles osculate at the points of contact of concyclic tangents,

the other common tangents of these circles and the parabola are concyclic.



CHAPTER VI.

THE ELLIPSE.

172. PEF. i. Being given in position a point S, and a line

The locus of a variable

point P, whose distance from

S has to its perpendicular dis-

tance from NJV' a given ratio

e, less than unity, is called an

ELLIPSE.

DBF. ii. The point S is

called the FOCUS, the line

NN' the DIRECTRIX, and

the ratio e the ECCENTRICITY of the ellipse.

173. To find the equation of the ellipse.

1. Take the focus as origin, and the line through 8 per-

pendicular to the directrix as the axis of x, and a parallel to

the directrix through 8 as the axis of y\ also denote the

perpendicular SO from 8 on the directrix by /; then, if

the co-ordinates SM, MP be xy, we have SPZ = xz + f,

PN= x+f; but (DBF. i.) SP 4- PN= e
;
therefore

13

(502)

which is the required equation.

Observation. It will be_ seen that equation (502) includes the three

conic sections. Thus, when e is less than unity, it represents an ellipse ;
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when equal to unity, a parabola; and when greater, a hyperbola. Also

the general equation ax1 + 2hxy + by
1 + Igx + 2/y + c = may obviously

be written in the form (x a)
2 + (y )

2 =
(Ix + my + n)

2
; for, by

expanding and comparing coefficients, we should obtain a sufficient number

of equations to determine a, j3, &c., in terms of the coefficients of the general

equation. And it is evident that (x of 4- (y )

2 =
(Ix + my -f )

2 can

by transformation be reduced to the form (502).

#f
2. If in (502) we put x = x + T

2 ,

L "~ &

2 21*

weget ____.
Hence, if C be the new origin,

Now, putting y = in (i.), we get

giving for x two values, equal in magnitude, but of opposite

signs. Hence, denoting the points where the ellipse meets

the axis of x by A, A', we have

CA' = -^-, CA = --*L.

therefore AC = CA', and the line AA' is bisected in C.

Hence, denoting AA' by la, we have

a =
T=-j>- (

ra
->

Again, putting x = 0, and denoting the points where the

ellipse cuts the axis of y by , JB', we get in the same manner

Hence BB' is bisected in C
; and, denoting BB' by 2i, we

have
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Now, since equation (i.) may be written

_L i >J- I
.2^2

~ 1
>

e2/2
tf
2/2

from (in.) and (iv.) we get

4 jyi. (503)

This is the standard form of the equation of the ellipse.

DEF. in. The lines AA, BB' are called, respectively, the

TEANSVEESE axis and the CONJUGATE axis of the ellipse, and the

point C the CENTEE.

DEF. iv. The double ordinate LL' through 8 is called the

LATUS RECTUM Or PAEAJIETEE.

The name parameter is also employed by mathematicians in another and

a widely-different signification. Hence, to avoid confusion, it would be

better to discontinue its use as a name for the latus rectum,

174. The following deductions from the preceding equations

are very important :

1. b* = 2
(1

- e
2

),
from (in.) and (iv.)

2. If CS be denoted by c, c = ae, from (n.) and (in.)

3. (70=-, for C0= C8+f = -^
z +f=-^ 2

4: . b^Tc2^ a2
,
from 1 and 2.

5. CS.CO = a\ from 2 and 3.

6. Latus Eectum = 2(1 - e
2
).

For in equation (502) put
x = 0, and we get SL = ef; therefore LL1 = 2ef = 20(1

- e
2
},

from (in.)

7. From 1 and 6, we infer that the transverse axis AA,
the conjugate axis BB', and the latus rectum LL', are con-

tinual prdportionals.

8. From the equation (503) it is evident that the ellipse

is symmetrical with respect to each axis. Hence, if we make

CS' = SC, the point 8' will be another focus. Also, if
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we make C& = OC, and through 0' draw MM' perpendicular

to the transverse axis, the line MM' will be a second directrix,

corresponding to the second focus.

EXERCISES.

1. Given the base of a triangle and the sum of the sides, find the locus of

the vertex.

Let SS'P he the triangle, let the sum

of the sides equal 2a, half the base = c,

and xy the co-ordinates of P
;
then SP

Hence { (c + *)* + y
2
}* + { (e

-
a;)

2 4 y'

= 2. (i.)

This cleared of radicals gives

(a*-(?)z* + i

or, putting a2 - c2 = i2
,

o2);

Hence the locus is an ellipse, having the extremities of the base as foci.

Cor. 1. S'P=a-ex. (604)

For in clearing (i.) of radicals, we get

a
{ (c

- x? + y
2
}*
= a2 - ex ;

that is, a S'P = a2 aex : therefore S'P = a - ex.

Cor. 2. SP = a + ex. (505)

2. Given the base of a triangle and the product of the tangents of the

base angles, the locus of the vertex is an ellipse.

3. Given the base and the sum of the sides, the locus of the centre of the

inscribed circle is an ellipse.

For if xy denote the co-ordinates of the incentre of SPS', we have the

perimeter = 2a + 2c.

s c a 1

Also

Now,

hence

c + x'

y
2

a + c 1 + e

y
.-

C -x'

\+e
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Therefore = 1. (506)

In a similar way it may be proved that the locus of the centre of the

escribed circle, which touches the base externally, is the ellipse

c2 (1 + e)

= 1 (507)

and the loci of the centres of the escribed circles which touch the base

produced are the directrices of the ellipse which is the .locus of the vertex.

4. MN is a parallel to the diagonal AC of a fixed rectangle ABCD.
AE is made equal to AD ;

and EM, DN ,,

joined ; prove that the locus of their inter-

section P is an ellipse. (POHLKE.)

5. If a line AB of given length slide

between two rectangular lines OA, OB,

the locus of a point P fixed in the sliding

line is an ellipse. For let AP =
b, BP=a ;

then, denoting the co-ordinates of P by xy,

and the angle OAP by 9, we have

x = a cos 0, y b sin 0.

Hence, eliminating we get

3?- + = 1.

6. If a fixed point S, and a fixed circle, whose

centre is 0, be both at the same side of a fixed line

NN', and through S any line be drawn meeting the

circle in P, and NN' in S
;
then if RO be joined,

meeting a parallel to OP, drawn through S in p, the

locus of p is an ellipse. (Boscovicn.)

7. Prove that the radius of the Boscovich Circle,

divided by the distance of its centre from the fixed line,

is equal to the eccentricity.

8. CB is a fixed diameter of a given circle, A a

fixed point in CB produced. Through A draw any
line meeting the circle in D and E. Join CD and produce to f,

CF = AE; the locus of F is the ellipse

-. ..
AC* AB2 (Sra"W. HAMILTON.)
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175. To express the co-ordinates of a point P on an

ABA'B' in terms of a single variable.

Let AA', BB' be the transverse and conjugate axes of the

ellipse upon AA' as diameter
;

describe the circle AP'A'. Let

P be any point of the ellipse,

HP its ordinate
; produce MP

to meet the circle AP'A' in P1
.

Join OP', and denote the angle

J/UP'by <; then, since OM= x,

OP *= a, we have x = a cos <.

This value, substituted in the

equation (503) of the ellipse,

gives y = I sin < : therefore the co-ordinates of P are a cos
<f>,

b sin c/j.

DBF. The circle described on AA' as diameter is called the

AUXILIARY circle of the ellipse, and the angle <f>
the eccentric

angle.

The term eccentric has been taken from Astronomy ; the angle <p in that

science being called the eccentric anomaly.

Cor. 1. Since PM = b sin
<J>,

and P'M= a sin

PM : PM : : a : b. (508)

Hence we have the following theorem : The locus of a pointP
which divides |in ordinate of a semicircle in a given ratio is an

ellipse ;
or again, If from all the points in the circumference of a

circle in one plane perpendiculars be let fall on another plane, in-

clined to the former at any angle, the locus of their feet is an ellipse

(called THE ORTHOGONAL PROJECTION OF THE CIRCLE). For the

diameter of the circle which is parallel to the intersection of the

planes is unaltered by projection ;
and the ordinates of the circle

perpendicular to this line are projected into lines having a

given ratio to them.
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Cor. 2. If through P the line PJVbe drawn, making with

the transverse axis an angle equal to the eccentric angle, PN is

equal to the semi-conjugate axis b.

Cor. 3.NN'=a-l. (509)

Cor. 4. If p be the radius vector from the centre to -any

point P of the ellipse, then

p = A(), where A(<) = ^1-a2 sin2<. (510)

Observation. If the equation of the ellipse be written in the form

and if

H) -(?)* H) -(?)--
we get

2 = (tan + cot 0),
o

or, denoting tan by ,

EXERCISES.

1. The auxiliary circle touches the ellipse at the two points A, A'
;
hence

it has double contact with it.

2. If on the conjugate axis as diameter a circle be described, and ordi-

nates be drawn parallel to the transverse axis, the ordinates of the ellipse

are to those of the circle as a : b.

3. If a cylinder standing on a circular base be cut by any plane not

parallel to the base, the section is an ellipse.

4. If a circle roll inside another of double its diameter, any point in-

variably connected with the rolling circle, but not on its circumference,

describes an ellipse.

For if P be the point, C the centre of the rolling circle X. Join CP,

and produce to meet X in L and M
;
then L, M are fixed points in the cir-

cumference of X. Hence when X rolls the locus of each is a right line ;

thus the points L, M describe two rectangular diameters of the circle on

which X rolls. Hence, Ex. 5, page 205, the locus of P is an ellipse.
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176. The locus of the middle points of a system of parallel

chords of an ellipse is a right line.

Let PP' be a chord of the ellipse, and let the eccentric angles
of P, P' be (a + ft), (a

-
ft)

respectively; then ( 31, Ex. 3)

the equation of PP' is

b cos a . x + a sin a . y = ab cos ft. / ^^.

Now, it is evident that if a be con-

stant and ft variable, PP' will be

one of a system of parallel chords.

Let #!, yi be the co-ordinates of the middle point of PP', then

we have

xl
=.-

{cos (a -t- ft) +cos (a- ft}}
= fl cos a cos/?,

M

yi = -
{
sin (a + ft) + sin (a

-
ft} }

= b sin a cos ft.

Hence b sin a . x l
- a cos a . yl

=
;

and the locus of the middle point is

b sin a . x - a cos a . y
- 0. (512)

This is the line QQ'.

Cor. 1. Let RR' be the diameter parallel to PP'
;
then

since RR' passes through the origin, its equation must contain

no absolute term. Therefore from (i.), cos ft
= 0, or ft

= 90;
hence the equation of RR' is

b cos a . x + a sin a. y = 0. (513)

Cor. 2. If PP move parallel to itself until the points P,
P become consecutive, then PP' will become the tangent at Q,

and evidently we must have /?
=

;
therefore the tangent at Q is

b cos a . x + a sin a . y = ab. (514)

Now, if x', y
1 be the co-ordinates of Q, we have x' = a cos a,

y'
= b sin a

; hence, from (514) we get the tangent at x'y',

xx' yy'
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Cor. 3. If the angles which QQ', RR' make with the axis

of x be denoted by 0, 0', respectively, we have from (512),

(513),
^ ^

tan 6 = - tan a, tan 6' = - - cot a ;

a a

tanO.tunff =-- (516)
a2

Since this remains unaltered by the interchange of and 0',

it follows that, if two diameters QQ', RR' of an ellipse be such

that the first bisects chords parallel to the second, the second

also bisects chords parallel to the first.

DBF. Two diameters which are such that each bisects chords

parallel to the other are called CONJUGATE diameters.

Cor. 4. Since the eccentric angle of Q is a, and of R

a + -
( Cor. I

),
we see that the difference between the eccen-

2i

trie angles of the extremities of two conjugate semi-diameters

is a right angle.

Cor. 5. If x", y" denote the co-ordinates of It, we have

x = a cos

but x1 = a cos a, y'
= b sin a

;

therefore x" y', y" = -x'. (517)
tt

These formulae are due to Chasles.

Cor. 6. If the conjugate semi-diameters CQ, CR be de-

noted by a', b
r

, respectively, we have

a'* = x'2 + y'
2 = a2 cos2a + b2 sin2 a = b2 + e*x'

2
; (518)

V2 = x"2 + y"
2 = 2 sin2a + I2 cos2a = a2 - eV2

; (519)

theieforo a'
2 + I'

2 = a2 + b2
; (520)

hence the sum of the squares of two conjugate semi-diameters

is constant.
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Cor, 7. The tangent at Q is parallel to the diameter RK.

Cor. 8. The area of the triangle QCR =
(x'y"

-

a cos a, b sin a,

- a sin a, b cos a
(521)

therefore the area of the parallelogram QCRT is equal to ab.

Hence it follows that the area of the parallelogram formed by the

tangents at the extremities of any two conjugate diameters of an

ellipse is constant.

The results proved in Cors. 6, 8 are called, respectively, the

first and second theorem of APOLLONIUS.

EXERCISES.

1. Given any two conjugate semi-diameters OP, OQ of an ellipse, to

find the magnitude and direction of its axes.

From P let fall the perpendicular PN on OQ; produce and cut off

PL = OQ ; join OD, and on OD as diameter describe a circle ;
let be

D

its centre ; join PC, cutting the circle in the points E, F:, join OS, OF,

and make OB = EP, and OA = FP. Then OA, OB are the semiaxes

required.
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Dem. OA* + OB* = .EP2 + PP2 = 2(7P2 + ICE* = 2(7P2 + WC*
= OP* + P2>2 = OP2 + OQ* ;

that is, equal to the sum of the squares of the semi- conjugate axes.

Again,

OA.OB = FP.EP= DP. NP= OQ.NP= parallelogram OPQR.

Hence (Cars. 6, 8) OA, OB are the semiaxes required.

The foregoing beautiful construction is due to Mannheim. See Nouv. An.

de Math., 1857, p. 188 ; also Geometrie Atialytique, tome 1, p. 457, par

M. G. LONGCHAMPS.

2. Being given the transverse and conjugate diameters of an ellipse to

construct a pair of equiconjugate diameters.

3. Prove that the acute angle between a pair of equiconjugate diameters

is less than the angle between any other pair of conjugate diameters.

177. To find the equation of an ellipse referred to a pair of

conjugate diameters.

Let CP, CD be two semi-conjugate diameters of lengths

a', V
;

let RR be a chord

parallel to CD
;
then RR is bi-

sected by CP in N. Hence,

denoting CN, IfR by x, y, and

the eccentric angles of j5, R by

(a + /3), (a
-

/3), respectively, we
have

(a cos (a + /?) + a cos (a
-

/3) )

2 < 1 sin (a + ft} + 1 sin (a-/3) )

'

/*& /
; > H~ V ,-"- >

I 2 i I 9 i
\

* r. i * /

=
(

2 cos2a + i2 sin2a) cos2^ = a'
2 cos2/S. ( 176, Cor. 6.)

In like manner 2/

2 = fl'
2 sin2/? ;

hence ..+ ,!, (Compare 156, 3.) (522)

Cor. 1 . The co-ordinates of any point on an ellipse referred

to a pair of conjugate diameters can be represented by

a' cos 13, i'sin/3. (523)
p2
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Cor. 2. The equation of the tangent to an ellipse referred

to a pair of conjugate diameters is

(524)

Cor. 3. If the tangent at R meet CP produced in T,

CN.CT=CP*; (525)

Xtc *U$J

for the tangent at R is + -^ = 1
;
and putting y = 0, we

get **' = a!\ or CN. CT = CP*.

Cor. 4. The tangents at the extremities of any double ordi-

nate RR' meet its diameter produced in the same point.

Cor. 5. The line joining the centre to the intersection of

two tangents bisects their chord of contact.

EXERCISES.

1. If AB be any diameter of an ellipse, AE, BD tangents at its extremi-

ties, meeting any third tangent ED in _,

E and D, prove that AE . BD = square

of semi-diameter conjugate to AB.

For denoting AC and its conjugate

by a, V, the equation of ED is

x cos $ yam ft = 1. B

(Equation (524).)

Hence, denoting AE, BD by y\, yz,

respectively, we have, substituting
-

a', + a', respectively, for x,

yieinft = V (1 4 cos ft),

yZ 6wft = V (1
- cos ft) ;

hence y\ y* = V*. (526)

2. If CD, CE be drawn intersecting the ellipse in D', E', prove that

CD", CE" are conjugate semi-diameters.

3. The equation of the ellipse referred to equiconjugate diameters is
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4. If AS be the transverse axis, the circle described on DE as diameter

passes through the foci.

5. If CP, CD be any two semi-diameters; PT, DE tangents at P
and D, meeting CD, CP produced in T and E; prove that the triangle

CPT= CDE.

6. In the same case, if PN, DM be parallel, respectively, to DE andPT,

prove that the triangle CPN'= CDM.

DBF. Two chords, such as AP, BP, joining any point P on the ellipse to

the extremities of any diameter AS, are called SUPPLEMENTAL CHORDS.

7. Diameters parallel to a pair of supplemental chords are conjugates.

8. If a parallel to a fixed line meet a given semicircle in C and its dia-

meter in D, prove that the locus of the point E, which divides CD in a

given ratio, is an ellipse.

9. If a line AB of given length slide between two fixed lines, prove
that the locus of the point P, which divides AB in a given ratio, is an

ellipse.

10. If a given triangle ABC slides with two vertices A, B on two
fixed lines OX, OT, prove that the

third vertex C describes an ellipse

(ScHOOTEN, Organica Conlcorum

Descriptio, 1646, c. 3, Ex. Math, iv.)

About the triangle OBA describe a

circle cutting A C in D ; join BD, OD ;

then, because the angle AOB is given,

the angle ADB is given ;
hence the

three angles of the triangle BCD are

given : and since BC is given, CD is

given ;
also the angle BOD, being

equal to BAC, is given. Hence the

line OD is given in position ; and the

proposition is reduced to the following : AD, a line of given length,

slides between two fixed lines OX, OD, and C is a fixed point in it :

therefore (Ex. 9) the locus is an ellipse.

11. If a circle pass through the foci of an ellipse, and intersect it on one

side of the transverse axis in the points G, H, and on the other side in the

points /, K, the rectangle contained by the perpendiculars from the foci on

any of the four chords 10, IS, KG, KH is equal to J4
/
fi2 -

X
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178. To find the equation of the normal to the ellipse at the

point xfy'.

Let a be the eccentric angle of the point x'y' ; then the

equation to the tangent at

o ( 176, Cor. 2) is

I cos a.

hence

is the equation of the normal
;

and, putting for x', y' their

values in terms of a, we get

asina.a?- icosa.y = c
2 sina cosa,

or

(527)

(528)x y

Cor. 1. In equation (527) put y = 0, and we get x = ae2 cos a,

or CO = e
zx'

; (529)

hence MO =
(1

- e
2
)
a cos a.

Cor. 1.PGP- = PM* + MG* = 52 sin2 a+ (1
- &J a2 cos8 a;

i2

but 1 -e*= - therefore PG* = b* {sin
2 a+ (1

- e2
) cos3 a}

=
o*(l

- e* cos1 a) ;
therefore

In like manner,

(530)

P& = \/l - e
2 cos2a

;

therefore PG. PG' = a* (1
- e* cos2 a). (531)

Cor. 3. If p, p' be the focal vectors to P, we have

p = a + ex' = a(l + e cos a),

p'
= - a/ = a (1

- * cos a) ;

therefore PG.PG' =
pp'. (532)
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Cor. 4. If CR be the semi-diameter conjugate to CP, we

have
CR* = tf sin2 a + l

z cos2 a = a* (1
- e

2 cos2 a).

therefore PP
' = CR Z = $'

2
. (533)

Hence PG.PG' = VZ
. (534)

Ctor. 5. If <7Z be perpendicular to the tangent at P,

OP-
\ - & cos2 a*

Therefore CL.PG = l\ and CL . PG' = a2. (535)

tfor. 6. If through G, G' parallels be drawn to the axes,

meeting in -STthe locus of jSTis an ellipse.

EXERCISES.

1. The co-ordinates of the intersection of normals at the points (a + 0),

(a
-

0), are

_c
2 cosa. cos(a40)cos(a-0) c2 sino. sin(a+ 0) sin(a-)

a cos I cos

2. If the normals at a, 0, 7 be concurrent,

sec a, cosec a, 1,

sec 0, cosec 0, 1,

sec 7, cosec 7, 1

This relation may be reduced to the product

= 0. (537)

(538)
The latter factor of which, viz.

sin (j8
-

7) + sin (7
-

a) + sin (a
-

0)

vanishes when any two of the points o, 0, 7 are consecutive. Hence the

condition that normals at three distinct points, a, 0, 7 may be concurrent is

sin (0 + 7) +sin (7+ a) + sin (a+ )8)
=0. (539)

3. The two foci and the points P, G' are concyclic.

4. Find the co-ordinates of the intersection of two consecutive normals.

Making = 0, in Ex. 1, we get

c2 cos3 a cz sin3 a
* = --

, y = T (540)
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Or thus : the co-ordinates of a point equally distant from o, /}, y ( 32,

Ex. 3) are

c2 c2
'

i

a b

and, supposing the points to become consecutive, we get, for the centre of

a circle passing through three consecutive points, the same co-ordinates

as before.

5. Find the locus of the centre of curvature of all the points of an ellipse.

Eliminating a from the equations (540), we get

(ax}$ + (5y)8 ct, (541)

which is the evolute of the ellipse.

i'
2

6. The radius of curvature at a is = , where p is the perpendicular
P

from the origin on the tangent.

The radius of curvature is the distance between the points

; (a cos a, b sin a),

V*
which by an easy reduction can be shown = . (542)

7. In the figure, $ 175, if we complete the rectangle NON'Q, prove that

the normal at P passes through Q.

8. In the same case if OP' be produced to Funtil P7=b and PY joined,

prove that PY is the normal at P.

9. The join of the points MN(Qg., 178) is normal to another ellipse.

179. The feet of the normals that can le drawn from any point

to an ellipse lie on an equilateral hyperbola.

Dem. The normal at a point tfy' is a^xfx'
-

tfyly'
= c2

,
and

if this pass through a fixed point hk, we have tfhjxf
-

tfk/y'
= &.

Hence, omitting accents, we get

<?xy + VJcx - a% = 0, (543)

which denotes an equilateral hyperbola passing through the

centre, and thibugh the feet of the normals from hk.

Cor. 1. Since the hyperbola (543) intersects the ellipse in

four points, four normals can be drawn from any point to an

ellipse.
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Cor. 2. The equation of the normals from hk to the ellipse is

(aV + b
2

f} (kx
- hyj = cWf. (544)

For, transforming the ellipse and hyperbola to the point M as

origin, we get

a* (y + ^)
2 + & + ^)

2 = 2*2
,

c
2
#y + 2 z - J% = 0.

In these equations change x into A#, and y into Ay, and elimi-

nate A.

It was by the hyperbola (543) that Apollonius solved the

problem of drawing normals to an ellipse. It is called the

Apollonian hyperbola. Prom equation (543) it is evidently the

same for all homothetic ellipses.

EXERCISES.

1. The product of the abscissae of each pair of opposite vertices of the

complete quadrilateral formed by tangents to an ellipse at the feet of normals

from any point hk, is equal to a2
,
and the product of ordinates = b2 .

For, if x\y\, x^yz he a pair of opposite vertices, their polars, viz.

xxija
2 + yyijb

2 1=0, and xxz/a
2 + yy^V1 1 = 0,

will he a line pair passing through the feet of normals, and therefore through

the intersection of ellipse and the Apollonian hyperbola of the point hk.

Hence, for some value of A we must have

\ (e
2
xy + b2 kx az hy) {xxija

2 + yy\\W 1}

{xxzja? + yy*\fr
- 1 }

a
*/<* + y

2
/4

2 - 1. (i.)

And by comparing coefficients we have

x\xi, = - a2
, y\yz = J2 . (545)

2. If the foot of one'of the four normals be the point x'y', the triangle

formed by the tangents at the feet of the three other normals is inscribed in

the hyperbola
l = Q. (546)

For three of the opposite summits lie on the tangent at x'y', that is, on

xx'ja
2 + yy'jb

2 -1=0,

and changing x into az/x and y into 52/y.

3. By comparing coefficients in (i.) we get hk in terms of x\y\ :
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thus, Ac2 =
(ariy2 + *2yi)/a

2A2
,

- \bzk = (xi + #2)/a
2
, \a*h = (yi + y2)/i

2
;

hence (#iy2 + a^yij/e
3 = -

(x\ + #2)/&
=

(yi + y2)/Ai ;

and eliminating #2y2 between these and equation (545) we get

^l 2'-^2 a2

"

2

^

L*
1

(547)

DBF. The point hk is called the normal pole.

4. If from a given point x\y\ tangents be drawn to a system of confocal

conies, the circumcircles of the triangles formed by the tangents and chords

of contact are coaxal. (TOWNSEND, Bishop Law's Prize Examination, 1876.

ALLERSMA, Mathesis, tome v., page 39, 1885.)

For if hk be the normal pole, the circumcircle will have the join of the

points x\y\, hk as diameter. Hence its equation is

** 4- y
2 -

(xi + h) x - (yi + k)y 4 A#i + kyi = ;

and substituting for hk from (547) we get

mii "

tfyit + PxS
yyi

"
aV + A 58

*!
9

(548)
which may be written bzS + c2<S' = 0, where

8= (x? + yi
2
) (*,+ y

2
)
-

(*i
2 + yi

2 + c2
) can

-
(a;i

2 + yi
2 - c2

) yyi + c2 (*i
2 -

yi
2
),

-S'^yi
2
(s

2 + y
2
)
-

(*i
2 + yi*

- c2
) yyi

- ^yi
2
.

JOACHIMSTHAL'S CIKCLE.

180. Iffrom any point hk in the normal at the point x'y' of an

ellipse, three other normals be drawn, their feet and the point
- x' - y' are concyclic.

Dem. Since the hyperbola c
2

xy + &kx - azhy passes through

x'y', we have cVy' + tfkx? - a?hy
r = 0. Hence by subtraction

we get a result which may be written either

(*
-

*') (y + W/c
2

) +(y- y'} (xf
-

a^h/c^ = 0, (i.)

or

and from the ellipse we have

+ *Q (y _ (
.

{ }
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Hence, eliminating x - x1

, y -
y' quantities, which vanish

when x = x' and y =
y', first between (i.) and (m.), and then

between (n.) and (in.), and adding, we get the circle

z* + y
2 + xx1 + yy'

- h (x + x 1

}
- Tc (y + y'}

Now, putting u = a2 + tfkjy'
= lz + a?h/z', and remembering

that x'^/a* + y'
2

/b
z = 1

,
this equation may be written

x* + y* + xx' + yy'
- u (xx'fct? + yy'lP + 1)

= 0. (549)

This is called JOACHIMSTHAL'S CIECLE. It passes through the

feet of the three normals
;
and since, manifestly, the co-ordinates

- x1 -
y

1

satisfy it, it passes through the point diametrically

opposite to x'y'.

Cor. If be the centre of the ellipse, and P the point
- x1 -

y', x2 + y* + xx' + yy' = is the circle on OP as diameter,

and xx 1

'/a? + yy'/l
z + 1=0 is the tangent at P, and these inter-

sect, not only at P, but at the foot of the perpendicular from

on the tangent at P. Hence we have LAGTJERHE'S theorem.

JoachimsthaV s circle passes through the foot of the perpendicular

from the centre on the tangent at P.

EXERCISES.

1 . If from a fixed point a perpendicular be drawn to a diameter of a conic,

the locus of its intersection with the conjugate diameter is the Apollonian

hyperbola. (CHASLES.)

2. The locus of the middle points of the chords of intersection of circles

described from a given point with the ellipse is the Apollonian hyperbola.

(Ibid.)

3. If the equation of any pair of opposite sides of the quadrangle whose

summits are the feet of the four normals that can be drawn from any point

be Ixja + myjb -1 =
0, and l'x\a + m'yjb 1 = 0, then

II' + 1 = 0, mm' +1 = 0. (550)

For, if x\y\, xzyz be the poles of these sides, we have x\. = al, y\ = bm,
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Xz = al', yz = bm', but XiXz = - a2
, y\yz = iz

, equation (545). Hence

the proposition is proved.

4. If x'y' be the foot of one of the normals to an ellipse, the sides of the

triangle whose summits are the feet of the other normals are tangents to a

parabola. (F. PURSER.)
This is the reciprocal of the hyperbola x'jx + yjy + 1 = 0, with respect

to the ellipse. Its equation is

(xx'l(f
-

yy'ltf)* + Zxx'ja
1 + 2yy'/*

2 + 1 = 0. (551)

I shall call it Purser's Parabola. See Quarterly Journal, tome viii., p. 66,

1867.

5. The focus of Purser's parabola is the point where Joachimsthal's circle

meets the tangent at P, 180, Cor.

6. If o, ft, y, $ be the eccentric angles of the feet of normals,

tan J (a + j8) tan | (7 + 8)
- 1 = 0, (552)

or a + $ + 7 + 8 = (2n + 1) T. (553)

This may be deduced from equation (539).

7. If from an extremity of the major axis of an ellipse perpendiculars be

drawn to the four normals from any point, they meet the ellipse again in

concyclic points. (JOACHIMSTHAL.)

8. If CP (fig., 178) bejoined, and a perpendicular to OP at G meet CPin

J, the perpendicular JK from /on the transverse axis passes through the

centre of curvature. (MANNHEIM.)

From the construction we have CT: CO : : CP: CJ : : CM : CK. Hence

a2/*' : V : : x' : CK, .-. CK** V3
/a

2 = c* cos3 a/a,

.. CK is equal to the abscissa of the centre of curvature.

181. To find the lengths of the perpendiculars from the foci on

the tangent at any point <f>.

The tangent is

6 cos
<f>

. x + a sin
<f>

. y - db = 0,

and the co-ordinates of the -^ '
-

focus S are ae, 0. Hence the

perpendicular

SL = a!>(l- eC
os^

/I
I

\ 1

- e cos

1 + e cos
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or

srz'=b r-.Similarly,

SL^- --L-- =

221

(554)

(555)

(556)

'. (557)

(70r. 3. The tangent LL' bisects the external angle at P of

the triangle SPS', and the normal PG the internal angle.

Cor. 4 The first positive pedal ( 162) of an ellipse with

respect to either focus is the auxiliary circle. For, since the

angle SPH is bisected by PI,, we have SL = LH; therefore

SB. is bisected in L, and SS' is bisected in C; therefore, if CL

be joined, CL = S'tf= %(S'P + PS} = a. Hence the locus of

Z is the auxiliary circle. And conversely, the first negative

pedal of a circle with respect to any internal point is an ellipse,

having the point for one of its foci.

Cor. 5. If any point in LL1 be joined to S, the circle

described on the join will

intersect the auxiliary

circle in L. Hence may
be inferred a method of

drawing tangents to an

ellipse from an external

point. Thus if Q be the

point, join QS ;
and on QS

as diameter describe a

circle intersecting the

auxiliary circle in L and

M
; QL, QM are the tan-

gents to the ellipse.

Cor. 6. The two tangents from Q are equally inclined to

the focal vectors QS, QS'. (PONCELET.) For, join the centres
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C, of the circles; then CO is parallel to S'Q; therefore it

bisects the arc US, but the line joining the centres also bisects

the arc ML. Hence the arc RM= SL, and the angle S'QM
= SQL.

EXERCISES.

1. Find the relation between the eccentric angles of two points whose

joining chord passes through a focus.

If the eccentric angles be (o + ), (a
-

0), the chord will be

b cos a . x + a sin a . y = ab cos
;

and if this passes through the focus (ae, 0), we get

e cos a = cos 0. (558)

Hence the equation of any focal chord is

a; cos a y sin a
H 7 = + e cos a, (559)

the sign depending on the focus through which the chord passes.

2. The tangents at the extremities of a chord passing through either

focus meet on the corresponding directrix. For the tangents at the points

(a 4 /3), (o
-

j8), are b cos (a + )8) * + a sin (a + ) y = ab ;

b cos (a
-

)8) x + a sin (a
-

0) y = ab
;

and the co-ordinates of the point where these intersect are

a cos a b sin a

cos cos $

Substituting the value of cos from (558), we get

a b tan a

(560)

(561)
e e

which are the co-ordinates of a point on the directrix.

3. In the same case the join of the intersection of tangents to the focus

is perpendicular to the chord. For the line joining ae, to the point

(561) is a sin a . * b cos a . y = 0, which is perpendicular to the

chord (559).

4. If the co-ordinates in (560) be denoted by x'y', we get

x' cos j3 . y' cos /3
cos a = 1

sin a= 7
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Substituting these in the equation of the chord, we get

Hence the chord of contact of tangents from x'y' is

xx' ,yy'_,
n "T IQ

- *
a2 i2

5. If the chord 5 cos a . x + a sin a . y = ab cos pass through a fixed

point #y, the locus of the intersection of tangents at its extremities is

x*' ,yy'_^7* "FT
i

For, denoting the co-ordinates (560) by xy, and substituting in i cos a . of

+ a sin a . y'
= ab cos /3, we get

DBF. 2%e He - + -75-
= 1 is called the POLAR of the point x'y' with

a*

respect to the ellipse. (Compare 89, 149.)

Cor. The directrix is the polar of the focus.

6. If o be variable and ft constant, the chord joining the points (a + /3),

(a
-

)
is a tangent to the ellipse

7. In the same case the locus of the intersection of tangents is

8. The equation of the perpendicular from the point (560) on the chord

joining the points (a + j3), (a
-

0) is

ox by at
2 e2---

fj-
= --

(compare 178), (566)cos a sin a cos

which meets the axis in the points

/acoso\ a* ez sin a

\ cos /
'

b cos0
'

that is, in the points

ft. -*> (667)
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9. Find the condition that the join of (a + j8), (a 0) shall touch the

ellipse

If
<f>
he the point of contact, the equations

b\ cos
<(>

. x + i sin
(j>

. y - a\ b\ = 0,

b cos a .x + a Blna.y ab cos $ =

must represent the same line ; hence, eliminating <f>
from the equations

cos
<(>

cos a sin
/>

sin a

i a cos )8' bi b cos /}'

a t
2 cos2 a bi

z sin2 a
we get 2

+-p
= cos2 0, (568)

which is the required condition.

10. If
<j>

denote the angle between the tangents at (a + 0), (a
-

/3), prove

_ 2a* sin 20m * =
(a

2 - i2
)
cos 2a - (a

2 + i2
)
cos 20'

11. If the angle <f>
be right, we get (a

2 - J2
) cos 2o = (a

2 + i2
)
cos 2)8,

or (a
1 + i2

)
cos2 j8 = a2 cos2 a + i2 sin2 a.

a cos a i sin a
Hence, denoting

--
, by x, y, we get the circle

COS fj COS fj

a? + i2
(570)

as the locus of the intersection of rectangular tangents.

12. If in Ex. 9 we put i
2 = a2 - A2 , i

2 = i - \2
, the ellipses will be

confocal, and equation (568) reduces, if b' denote the semi-diameter con-

jugate to that drawn to the point a, to

sin/J=^, (571)

which is the condition that the join of the points (a + 13), (a
-

ft) on the

ellipse
z2 w2

5+P- 1
-

shall touch the confocal
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13. If two tangents to an ellipse be at right angles, their chord of contact

touches a confocal ellipse (Ex. 11, 12).

14. The four fecal vectors drawn to any two points of an ellipse f>ave out

common tangential circle, whose centre is the pole of the chordjoining the two

points.

For, let a + 3, a - # in the points, then the pole of their chord is the point

a cosa/cos /}, b sina/cos/}, and the perpendicular from this on the focal chords

have one common value, Jtan/3. Hence the proposition is evident.

(CHASLES.)
The equation of the circle is

(x cos j8 a cos a)
2 + (y cos b sin a)

2 = i2 sin2 ft. (572)

15. The angle <}>
between the tangents to an ellipse from a point can be

expressed in terms of the focal vectors to their point of intersection.

Let F, F' be the foci, T one of the points of contact. Join FT, F'T

produce FT to S, making TS = TF'. Join OS, OF, OF', then, denoting

OF, OF' by p, p', the sides of the triangle OFS are respectively equal to

p, 2a,p', and the angle FOS = <p.

pi + p
'2 _ 42

Hence cos
<}>
= -- --

; (573)
2pp

and putting p + p'
= 20', we get

cos2 4>=^ri (574)
PP

16. If fi, ft , /*" be the semi-axes major of three confocal ellipses, and if

from any point in the outer, tangents be drawn to the three
; then, if

A
(fj.fjf)

denote the angle between tangents to the confocals /u, /i',

tt')
: sin2 (n/J.") : : /t

2 -
/t'

2
: /u

2 -
/t"

2
, (575)

17. If tangents to two confocals be at right angles, the locus of their

intersection is a circle.

18. If c denote the length of the chord joining the points (a + ), (a
-

(3),

we have (Dem. 177) c2 = 4i'2 sin2 0, and from Ex. 12,

therefore
2x5'2

C = - . (BUBNSIDE.) (576)

19. If a tangent to one confocal be perpendicular to a tangent to another,

the chord of contact is bisected by the line joining their intersection to the

centre.
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Let the confocals be

*2
/

2 + y
2
/*

2 -1 = 0, *2/'
2 + 2/Y*'

2 -1 = 0, x'y', *V '

the points of contact, then the co-ordinates of the middle point of the chord

of contact are (x' + x"), \ (y' + y"). Also the line joining the centre to

the intersection of the tangents

xx Ia* + yy'[b
z -1 = 0, xx"ja'* + yy"jb'

z -1 =
is

x (x'la*
-

x"la'
z
) + y (y'/b

2 -
y"\b'-}

=
;

and substituting the co-ordinates ^ (x' + x") \ (y' + y'), we find that it is

satisfied if a?V/V2 + y'y"/4
2
4'z = 0, which is the condition that the tan-

gents are perpendicular.

20. If tangents to the confocals

x* v2 z2 v2

~ + g_1.0, -+ y--l =
az oz ai

2
Oi

2

be at right angles to each other, the line joining the point of contact on one

to the point of contact on the other is a tangent to a third confocal, the

squares of whose semi-axes are

a2 i
2

b*-b?

aT+7T2' ^TiT'
Let PT, QT be the tangents to the confocals a, a\ ; C the centre, S, S'

T

the foci: join PQ, SQ, CT, and draw CU, CV parallel to SQ, PQ, then

(Ex. 19) PQ is bisected in S. Hence TB = EQ ;
.-. CT = CY. Hence

CV = \Sa* + bi
z
, and CU=ai. Hence the ratio of CV : GV is given, that
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is, the ratio of sin GVU: sin CUV, or of sin TQP: sin TQS is given. Hence

(Ex. 16), the envelope of PQ is a confocal conic. Let a/3 be the semiaxes,

then we have (Ex. 16),

sin2 TQP : sin2 TQS : : a? - o2 : bj,

but sin* TQP: sin2 TQS : : CU* : CV* : : a? :
2 + b?.

Hence a2 = 2
0i

2
/(a

2 4 ir)

Similarly,
2 = W/( 2 4 i

2
).

21. If tangents to two confocal ellipses be parallel, the angles subtended

at the foci by the points of contact are equal.

EKEGIER'S THEOREM.

182. If from a point a on the ellipse rectangular chords AB,
A Che drawn, meeting it again in the points B, C, ^Winter-
sects the normal at A in a point D, whose co-ordinates are

acz cos a/(a
2 4 i2

),
- l& sin a/(a

2 + 2
).

Dem. Let the eccentric angles of the points ,
C be ft, y,

then the equations of AB, A C are

I cos (a + f3} x + a sin ^ (a + (3} y - ab cos (a
-

/?)
=

0,

i cos (a + y) x + a sin $ (a + y) y - ab cos (a
-
y)
=

0,

and since these lines are at right angles,

I
2 cos % (a 4 /3) cos (a 4 y) + a2 sin (a 4 /?) sin (a4y) = 0.

Hence (a
2 4 i2) cos (0

-
y)

- c
2 cos (a 4 J0 + iy) = 0.

Again, if we substitute the co-ordinates of D in the equation

of B C, we get the same result. Hence the proposition is proved.

Cor. If the point A moves along the ellipse, the point D will

describe another ellipse, viz.

#2
/

2 + y
2
/^

2 =
0*/(

2 + &2
)
2
- (578)

EXERCISES.

1. If be the centre, the angle AOD is bisected by the transverse axis.

2. If perpendiculars be drawn from .4 to any pair of conjugate diameters

the line joining their feet bisects AD.

Q2
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183. The locus of the pole of any tangent to an ellipse, with

respect to a circle whose centre is one of the foci, is a circle.

Dem. Let S (see fig. 181) be the focus, R the radius of

the circle whose centre is S, and with respect to which the

poles are taken. Let fall SL perpendicular to the tangent to

the ellipse, and make SL . SQ = R2
;
then L, Q are inverse

points with respect to the circle whose radius is R
;
and since

the locus of L is the auxiliary circle, the locus of Q is its inverse,

and is therefore a circle
;
but Q is the pole of LL', and is the

point whose locus is required ;
hence the proposition is proved.

DBF. The locus of the poles of all the tangents to any curve with

respect to a circle is called the EECIPEOCAL JPOLAE of that curve with

respect to the circle.

From this definition we see that the foregoing proposition

may be enunciated as follows : The reciprocal polar of an

ellipse, with respect to a circle whose centre is one of the foci, is a

circle.

Cor. 1. If we take two consecutive tangents to the ellipse,

their poles will be consecutive points on the circle which is the

reciprocal polar of the ellipse ;
but the join of the poles of two

lines is the polar of the point of intersection of the lines. Hence

the locus of the pole of any tangent to a circle is an ellipse. In

other words, The reciprocal polar of a circle with respect to another

circle is an ellipse, having the centre of the reciprocating circle for

one of its foci.

Or thus :

Let S be the centre of the reciprocating circle, Q any point

on the circle whose reciprocal polar is required; join SQ, and

make SQ . SL = R*, and draw LL' perpendicular to SQ. Now,
since SQ . SL = R*, the locus of L is the circle which is the

inverse of that which is to be reciprocated; and since LL' is

perpendicular to SL, the envelope of LL' is the first negative

pedal of a circle with respect to a given point.
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Cor. 2. Since the auxiliary circles of a system of confocal

ellipses is a system of concentric circles, and the inverse of a

system of concentric circles is a system of coaxal circles, we have

the following theorem : The reciprocal polars ofa system of con-

focal ellipses, with respect to a circle whose centre is one of the foci,

is a system of coaxal circles, having the focus as one of the limiting

points. Conversely, The reciprocal polars of a system of coaxal

circles, with respect to one of the limiting points, is a confocal

system, having that point for one of the foci.

EXERCISES.

*1. If a quadrilateral AA'BB' be inscribed in a circle X, and if the

diagonals AB, A'B' touch a circle Y of a system coaxal with X, then the

sides (Sequel to Euclid, Fifth Edition, p. 126), AA', BB' touch another circle

of the same system, and the four points of contact are collinear. Becipro-

cally, If a quadrilateral be circumscribed to an ellipse, and if two of its

opposite vertices lie on a confocal ellipse, two of the remaining vertices lie

on another confocal, and the four tangents at these vertices are concurrent.

2. The reciprocal polar of the directrix of an ellipse with respect to a

focus is the centre of the circle into which the ellipse reciprocates.

3. If a variable chord of a circle subtend a right angle at a fixed point

within the circle, its envelope is an ellipse, having the fixed point for one of

its foci.

*4. If L be one of the limiting points of two circles 0, (/, and LA, LB
two radii vectors at right angles to each other, and terminating in those

circles, the locus of the intersection of tangents at A and B is a circle coaxal

with 0, O1

(Sequel to Euclid, Fifth Edition, p. 162). Eeciprocally, If two

tangents, one to each of two confocal ellipses, be at right angles to each other,

the envelope of the line joining the points of contact is a confocal ellipse.

*5. The envelope of the chord of contact of tangents to a circle which

meet at a given angle is a concentric circle. Eeciprocally, the locus of the

intersection of tangents to an ellipse, whose chord of contact subtends a given

angle at the focus, is an ellipse, having the samefocus and directrix.

184. The rectangle contained by the segments of any chord passing
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through a fixed point in the plane of an ellipse, is to the square

of the parallel semidiameter in

a constant ratio. (Compare

156.)

Let be the fixed point,

and take the lines OX, Y as

axes of co-ordinates parallel to

the axes of the ellipse ;
let the

co-ordinates of the centre with

respect to OX, OF be x', y' ;

then transforming to 0, as origin, the equation of the ellipse is

(x-xj (y-y)
2

= 1 ()Q ' 7
-1 \ /

a* b2

Now, take any point R in the ellipse, join OR, meeting the

curve again in R'
; then, if r, 6 be the polar co-ordinates of R,

we have x = r cos 6, y = r sin 0. Hence from equation (i.) we

get

(a
2 sin2 + P cos2

6} r2 - 2 (a
2
y' sin + b2 x' cos 0}r

+ (b
2 x'2 + a2

y'
2 - a2 b2

)
= 0. (n.)

Now, the roots of this quadratic in r are OR, OR'.

Hence OR . OR' =

Again, if p be the radius vector through the centre parallel to

OR, we have

therefore OR.OR_oP y^_,-
-2
+ 12 * (579)

p" a' b2

that is, equal to the power of the point with respect to the

ellipse. Hence the proposition is proved.

Cor. 1. If OS be another line through cutting the ellipse

in S, S', and p' the parallel semidiameter,

OS. OS'
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--
Cor. 2. If through another point o two chords he drawn

parallel to the chords OR, OS, and cutting the curve in r, r1

s, s', respectively,

OR. OR'
=

or.or'

OS . OS' os . os''
* ;

Cor. 3. If the points R, R' coincide, OR hecomes a tangent,

and if S, S' coincide, OS becomes a tangent ;
hence from

Cor. 1, Any two tangents to an ellipse are proportional to their

parallel semidiameters.

EXERCISES.

1. The rectangle HP. PD (see fig., 177, Ex. 1) is equal to the square

of the parallel semidiameter.

2. If any tangent meets two conjugate semidiameters of an ellipse, the

rectangle under its segments is equal to the square of the parallel semi-

diameter.

3. If through any point 0, in the plane of an ellipse, a secant he drawn

meeting the ellipse in two points ,
K , the locus of the point Q, which is

the harmonic conjugate of with respect to JR, S', is the polar of 0. For

_2_ _ 1_ _1__ /aty' sinfl + bz x'

OQ~ ~OR* ~OK'
~

\ V* + Px't-

Hence, denoting OQ hy p, we get, putting p cos = x, p sin 6 = y,

b* x' (x' x) + a~ y' (y
r

y)
= a? i2

,

or, transforming to the centre as origin,

xx>
j.

yy> x i n^ + ^ + J =
'

which is the polar of the point x' y' (see 181, Ex. 4).

4. If A, B he any two points, C the centre of the ellipse, and if AG, BH
he drawn parallel to CB, CA, intersecting the polarsof B, A, respectively,

in the points G, S; then AG . GB : AC . BH: : square of semidiameter

through B : square of semidiameter through A.

5. If MN he the polar of the point A ;
P any point on the ellipse ; AF

a perpendicular to the tangent at P
;
PG the portion of the normal inter-

cosflX
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cepted between the curve and the transverse axis
;
PM a perpendicular

from Poo. MN; then PG . AF varies as PM. For if the co-ordinates of

A be x' y' ; of P, x" y" ;
then

But
\

* 6* I

,rf*'
z

y'
2U PG.AF

therefore PM I + 1 a = .

This theorem gives an immediate proof of HAMILTON'S Law of Force.

Proceedings of the Royal Irish Academy, No. LVII. vol. iii., p. 308. Also

Quarterly Journal of Mathematics, vol. v., pp. 233-235.

6. Find the equation of the line through the point x'y' parallel to its

polar. If (a 4- 0), (a
-

)8)
be the eccentric angles of the points of contact

of tangents from x'y, the line required is

x cos a y sin a
+ sec ft = s L. (582)

a o

1. In the same case the line through the centre and x'y' is

f_ff. ^JL (583)

8. The equations of the tangents through x'y' to the ellipse are

L cos $ M sin ft
= 0. (584)

9. The product of the equations of the tangents is

= 0. (585)
V v f \u u~ i

Compare 85, 150.

* 185. To find the major axis of an ellipse confocal to a given

one and passing through a given point.

Let hk be the given point, + ^--1 = the given ellipse,
a o

then, putting a* - I2 = c
2
,
the equation of the required ellipse ;

xz
if

will be of the form + / 2 = 1, and substituting the given
a ' a* - c

* The student is recommended to omit this proposition until he has read

the chapter on the hyperbola.
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co-ordinates we get

aft,
_ (# + # + c

)

'2 + C2^2 = o (
586)

Similarly J'
4 -

(A
2 + 7<? - c

2
) b'

2 - C
2k2 =0. (587)

Let the roots of these equations be a'
2

,
a"2

, ;
b'

2
,
b"z

, respec-

tively; then

a' a" = ch, b' b" = ck </^l. (588)

Hence we have the following theorem : Two confocals to the

ellipse 1-
- 1 = can be drawn through the point hk : the

a2 b2

theproduct of the semiaxes major of these confocals is ch, and of the

semiaxes minor, cki ; where i denotes, as usual, */ 1 .

It will be seen in Chapter vn. that one of these confocals

must be a hyperbola unless k = 0, in which case one of them

must consist of the two foci.

DEF . The semiaxes major a', a" of the two confocals, which can

be drawn to a given ellipse through a given point, are called

the ELLIPTIC CO-OKDINATES of the point (LAME,
" Co-ordonnees

Curvilignes").
a'

2 a"2
b'

2 b"2

Cor. 1. h2 =
j-, -k2=

;

therefore h2 + k2 = =

= a'
2 + b"2 = a"2 + b'

2
. (589)

Cor . 2. The two confocals to a given ellipse which can be

drawn through any point cut each other orthogonally. For the

tangents are

and these tangents are perpendicular to each other if

h2 k2 _
1 1 _

a'
2 a"*

+
b'

2 b"2
~

'
>r

tf
2
~

c
2
~
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Cor. 3. Let p', p" denote the perpendiculars from the centre

on the tangents to the confocals through hk at that point, and

ft', ft" the semidiameters conjugate to the semidiameter drawn

to hk,

J3'
2 + h2 + k2 = a'* + b'

2
; [Equation (520)]

therefore /2 = '2 - a"2. (Cor. 1). (590)

Similarly, J3
lfz = I"2 - b'

2
. (591 )

But ppf = a'V [ 176, Cor. 8] ;
.-. ft* = -*L. (592)

(I
~~ d

a"2 b"z

Similarly, y* = ___. (593)

Cor. 4. By means of the values of A2
,
k2

,
Cor. 1, we find,

after an easy reduction,

V/(g'
2 - a2

) (a
2 - g"2

)

(a
12 -a2

} + (a"
2 - a2

) h2 + k2 - (a
2 + b2)

'

and substituting for hk the values
, -^ [181, Ex. 2],

COS/3 COS/5

this reduces to - r-
a sm

f . Hence [181,
(a*

- b2
)
cos 2a -

(a
2 + b2

)
cos 2/2

Ex. 10] we have the following theorem : If $ denote the angle

between the tangents to the ellipse +
j-z

= 1 =
0, from the point

whose elliptic co-ordinates are a', a".

(594)

la2 a"2

therefore tan<= / . (595)\ a 2 - a2

Therefore if
if/

denote the angle which the tangent at P to

the confocal a' makes with the tangent from P to the original

ellipse, we have

cot
\l/

la2 -a"*

V'2 - a2
'
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I a'
2 - a2

Hence sin \1/ = I , cos \lf

V*'
2 -*"2 '

Cor. 5. The results proved give a new demonstration of the

propositions, 181, Ex. 16.

The principal theorems in Cors. 4 and 5 were first published

in a Paper of mine in the Messenger of Mathematics in the year

1866, and were extended to sphero-conics, and to curves on con-

focal quadrics. Corresponding theorems were' given by CHASLES

for geodesic tangents to lines of curvature on the ellipsoid.

LIOUVILLE'S Journal, 1846.

EXERCISES.

1. The locus of the pole of the line p.x + vy = 1, with respect to a system

of conies confocal to + 1 = 0, is the line
a2 b*

--*- = #. (697)
W V

2. The equation of the director circle of an ellipse in elliptic co-ordinates

is a'2 + a"2 = 2a2 .

3. If from the centre of the ellipse ^ + y~ = 1 a parallel he drawn to the
a* o*

tangent from any point Pon + = 1 to a given confocal ('), to meet

the tangent at P to the first ellipse, the locus of the point of intersection is

a circle.

4. If a', a" be the elliptic co-ordinates of any point, < the angle included

a;
2

y~ ,

between the tangents from this point to + 1 = 0; then

a'
2 sin2 < + a"2 cos2 ^ < = a2 . (698)

5. If from the intersection of tangents to an ellipse distances be measured

along the tangents equal to the focal vectors of the intersection, the length

of the join of their extremities = 2.

6. The difference between the squares of the perpendiculars from the

centre on parallel tangents to two confocals is constant.
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1. The locus of the points of contact of parallel tangents to a system of

confocal ellipses is a hyperbola.

8. The locus of the point (a) on a system of confocal ellipses is a confocal

hyperhola.

9. The eccentric angles of the points of intersection of a system of con-

focal ellipses by a confocal hyperbola are all equal.

10. If two secants, OR, OS, cut the ellipse in the points R, R" ; S, &
respectively, and be tangents to a confocal,

For let a2 - A 2
,

i2 - A2 be the semiaxes of the confocal ; b', b" the semi-

diameters parallel to OR, OS; then

J__ 1 RR' 2A&'2

OR
~

OR'
~
OR . OR'

~
ab.OR. OR'

In like manner,

[Equation (576)]

OS OS' ab OS. OS''

But OR . OR' :OS.OS':: b'* : b"2
. [Equation (580)]

Hence the proposition is proved.

186. To find the polar equation ofan ellipse, the focus leing pole.
If the focus be origin the p
equation of the ellipse is

. [173]
Hence, putting

x = p cos 0, y = p sin 0,

we get

tf

1 - e cos 0'

that is, (600)P
1 - e cos ff

It is usual in Astronomy, when the polar equation is em-

ployed, to denote the angle ASP, called the true anomaly,

by ;
then the polar equation is
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Since a (1
- 6

2

)
= % latus rectum = I suppose, the polar equa-

tion is p =
z. (602)

1 + cos

Cor. 1. If the angular co-ordinates of two points on the

ellipse be a + ft,
a- ft, the equation of their joining chord is

- = e cos + sec ft cos (0
-

a). (603)
P

For assuming it to be of the form

;
- = A cos + B cos (0

-
a),

P

and putting in succession for the values a + ft, a -
ft, we get

1 + e cos (a + ft)
= A cos (a + ft) + B cos ft,

<

1 + e cos (a
-

ft}
= A cos (a

-
ft} + B cos ft,

Hence A =
e, B = sec ft.

Cor. 2. The equation of the tangent at the point a is

- = e cos 6 + cos (6
-

a). (604)
P

Cor. 3. The polar co-ordinates of the intersection of tangents

at the points whose angular co-ordinates are a + ft, a ft are

B = a, p =
l/(e cos a + cos ft}. (605)

Cor. 4. The equation of the normal at a is

- e sin a =
(1 + e cos a) \e sin 6 + sin (0

-
a) }

. (606)
P

For, if we put = a we get l/p
= 1 + e cos a, and if we put

= TT we get l/p
= (1 + e cos a~)/e.

EXERCISES.

1. If p, p denote the segments of a focal chord,

- + -,
= t (607)

P P J
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2. The rectangle contained by the segments of a focal chord is propor-

tional to the length of the chord.

3. Any focal chord ig a third proportional to the transverse axis and the

parallel diameter.

4. The sum of the reciprocals of two perpendicular focal chords is con-

stant.

5. If any chord RSf of an ellipse meet the directrix in D, the line SD
bisects the external angle of the triangle HSR.

6. The join of the intersection of two tangents to the focus bisects the

angle made by the focal vectors of the points of contact.

7. If any point on an ellipse be joined to the extremities of the trans-

verse axis, the portion of the directrix which the joining lines intercept

subtends a right angle at the focus.

8. The angle subtended at the focus by the portion of any variable tan-

gent intercepted by two fixed tangents is constant.

9. If a tangent from a variable point subtend a constant angle 5 at the

focus, the locus of the point is

- = cos 8 + e cos 0. (608)
P

10. If a chord PQ subtend a constant angle 25 at the focus, the locus of

the point where it meets the bisector of that angle is

- = sec 5 + e cos 0. (609)
P

11. If denote the true anomaly, <p the supplement of the eccentric angle

tan $0 . tan \$ = - (610)

12. If a circle passing through the focus of an ellipse touch it at the point

whose angular co-ordinate is a, prove that its equation is

2a)}, (611)

and that the common chord is

p (e
3 cos + e* cos (0 + a))

= / (1 + 2<? cos a + 2
), (612)

and if a vary the envelope of the chord is

p(e?-e3
cos0) = l(l-e

2
). (613)
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Exercises on the Ellipse.

1. Find the eccentricity of the ellipse 3x~ + 4y
z = 1.

2. If two central vectors of an ellipse he at right angles to each other

the sum of the squares of their reciprocals is constant. (STBINER.)

3. Find the equation of the circle through either extremity of the trans-

verse axis and both extremities of the latus rectum.

4. Find the equation of the tangent at either extremity of the latus

rectum.

5. The locus of the middle points of chords of an ellipse passing through

a given point is an ellipse whose axes are parallel to those of the given

ellipse.

6. If from any point in a circle a line he drawn making a given angle

with a fixed line, and divided in a given ratio, the locus is an ellipse.

7. If a transversal cut the conies

*>2 + /
2
/S

2 -1 = and z2
/

2 + y
z
lb* -f A (*

2 + */
2
)
- 1 =

where \ is any constant in the points P, Q ; P', Q' respectively, prove if

be the common centre that the angle POP= QOQf. State what this theorem

becomes if A. = I/ft
2
.

8. The reciprocal polars of the conies in Ex. 7, with respect to a con-

centric circle are confocal conies.

9. If a common tangent to the two ellipses

x* v2 x1 y2

-* + F2
- 1 =

> + r*
- 1 =

>

a-
5 i2 a i

2 *r

touch the first in x'y', and the second in x"y" ;
then x'x" is equal to the

square of the abscissa of either of their points of intersection, and y'y" to

the square of the corresponding ordinate.

10. If the sum of the tangents drawn from a point to two circles he given,

the locus of the point is an ellipse.

11. If a circle described through any point P on the minor axis of an

ellipse, and through the two foci intersect the ellipse in the points Q, Qf ;

prove that PQ, PQ' are either tangents or normals to the ellipse.

12. Tangents are drawn from a fixed point P to a system of confocal

ellipses ;
if T, T' be the lengths of the tangents to any of the ellipses, and 9

their included angle, prove

(\IT+ I/T) cos = constant. (CROFTON.) (614)
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Let 8, & be the foci, produce ST, ST', and make TU= TS, T'V= T'S',

UR = VT. Join RP, UP, VP, then HP = PT', and it is easy to see that

V

the angle TPR = SPS', and is given, since S, P, S' are given points. LetPW
bisect the angle SPU, then it also bisects TPR. Now, in the triangles

TPR, SPU 1/PT + \IPR = 2 <n&\RPTlPW,

1/SP + 1/PU= 2 cos | SPU/PW,

1/PT+ I/PI" = 2 c

1/SP+ IJS'P= cos TPT'IPW= 2

.-. (1/2* + 1/2") cos JO = (1/SP + 1/S'P) cos^SPS',
and is given.

13. The area of the triangle formed by the tangents from the point

(a cos a b sin a>

and

that is,

and

\ cos ft
'

cos 8

and their chord of contact, is ab sin2 tan ft,

14. If from any point T in PT (the tangent at P) a perpendicular TR be

drawn to the focal vector SP, and a perpendicular TM on the directrix
;

then SR = eTM.

15. Find the equation of the circle described on the intercept which the

ellipse

makes on the line y = mx + n ; and thence show how to find the length of

the normal at any point of an ellipse until it meets the ellipse again.
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16. The locus of the intersection of tangents at the extremities of a pair

of conjugate diameters is

and the envelope of the join of their extremities is

+ -* (616)

17. Find the co-ordinates of the pole of the normal at the point o, and

show that the locus of the pole is

o/* + S6/y
2 = e*. (617)

18. If a tangent at any point P meet the transverse axis in T
; then, if S

be the focus,
cos SPT=ecoa STP. (618)

19. Prove that the pedal of the ellipse with respect to its centre is

(a;
2 + y

2
)

2 = oi xi + JV- (619)

20. Prove that two of the normals drawn from the point whose co-ordi-

nates are

c1 cos o cos 2a e2 sin cos 2a

V2 $V2

meet the ellipse at the extremities of a pair of conjugate diameters.

21. If A, , C, D be the feet of four normals drawn from a pointM to an

ellipse E, whose centre is 0, the perpendicular from circumcentres of the

triangle formed by any three of the points A, B, C, D upon the common
chord of H, and the osculating circle of the fourth bisects the line OM.

(LONGCHAMPS.)

For the equation (549) may be written in the form

x2+ y*
- hx- ky= - #xx'\<#- + c-yy'lb* + iV2

/
2 + y2

/S
2 + hx' + ky'.

The left-hand side equated to zero represents the circle A, described on OM
as diameter, the second side equated to zero, represents a line S, parallel

to the tangent at the point D', the symmetrique of D with respect to the

transverse axis of J?, and therefore parallel to the common chord of E and

the osculating circle, the line S being the radical axis of the circle (549) and

A. Hence the proposition is proved.

22. Find the equation of the pair of lines joining the centre of the ellipse

to the points of contact of tangents from x'y'.

23. The sum of the eccentric angles of four concyclic points on an ellipse

is lit.
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24. If a circle osculate an ellipse at the point a, the co-ordinates of the

point where it meets the ellipse again are, a cos 3a, b sin 3a.

25. The sum of two focal chords of an ellipse parallel to two conjugate

diameters is constant.

26. Any two fixed tangents are cut homographically by a variable tan-

gent.

For the angle which the intercept on the variable tangent subtends at the

focus is constant.

27. If S be the focus, Tany point on the tangent at P, TM& perpen-

dicular on the directrix ; then, if ST = e' TM,

coaPST=-,.
6

28. If a chord PP1
of an ellipse pass through a fixed point T, and if

ST=e TM, then

tan$P-ST.tanJ JP'-ST=^4. (M'CuLLAOH.) (620)

29. If S, S' be the foci, and if the circle described on SS' as diameter

meet two conjugate diameters in H, H', prove that the sum of the squares

of the perpendiculars from S, H' on any tangent is constant.

30. If all the tangents to an ellipse be inverted from any internal point,

the locus of the centres of all the circles into which they invert is an ellipse.

31. If v be the intercept which any normal to an ellipse makes on the

transverse axis, and
<j>
the angle which it makes with it, prove

(621)
(

2 + i2 tan2 $>)!'

32. If two sides, AB, BC of a triangle be fixed, but the third moving in

any way, prove that the circumcentre 0, and orthocentre H of the triangle

ABC describe curves inversely similar. (NEUBERO.)

For AO and AH make equal angles with the bisector of the angle BAG
and AH = 2AO cos A.

33. If two central vectors of an ellipse be at right angles to each other

the envelope of the join of their extremities is a circle.

34. If the chords joining the pairs of points o, ft ; y, 8, respectively,

meet the transverse axis in points equally distant from the centre, prove

tan tan ^ tan J tan |=1. (622)
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35. If the co-ordinates in Ex. 20 be denoted by x, y, prove

2 (aW + iy)3 = c* (V - 5V) 2
. (623)

36. If CP, CD be two conjugate semi-diameters, and if the normal at

P be produced both ways to Q, (?, making PQ, PQ' each equal to CD,

prove that

CQ=a + b, CQ' = a-b. (M'CuLLAGH.) (624)

37. If x\y\, xzf/z, xsyz be any three points, and if

prove that - 4 (area of triangle formed by these points)
2

-f
252 is equal to

Si) T\%) ^13,

Tizt Szt Tzs, (625)

Tis, TM, 83

Multiply the determinants

yi/, i

yzlb, 1

ya/, i

38. If the three points form a self-conjugate triangle, with respect to 8,

area = */ SiS^Ssl^ab). (626)

Make TU, Tt3 , T23 each = in Ex. 37.

39. If they form a triangle circumscribed about S,

area = ab { VSi +

Let ABC be the circumscribed triangle A', ', C' the points of contact,

the centre, and let A'B' be the polar of C (xzyz), then, if < be the eccentric

angle of A', the area of the quadrilateral OA' CB' equal

= a cos < 3/3 4 sin <p #3.

Also substituting the co-ordinates of the point A' in the equation

xxzla
1 + yyslb* -1 = 0,

which is the polar of C, we get

b cos
<f> Xs + a sin $93 = ab.

B2
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Hence square and add, and we getW + W = 2*2 + (OA'CB')\ .-. OA'CB' =

Similarly,

OB'A C' = ab \/S~i, and C'BA' = ab

. . ABO = ab
{ VST+ VSg + V&} . (627)

40. If the triangle be inscribed in S,

area = < T12 TZS r8 i/(2ai). (628)

41. If PJf be an ordinate at any point Pof an ellipse, find the locus of

the intersection of PM, with the perpendicular from the centre on the tan-

gent at P.

42. If a point P whose eccentric angle is 9 be joined to the foci, and the

joining lines produced meet the ellipse again in Q, It ; find the equation of

QR, and prove that its polar lies on the normal at 0.

43. If
<J>

be the eccentric angle of the point P of an ellipse, Q the point

on the auxiliary circle corresponding to P; prove that the area of the

parallelogram formed by the tangents at the points P, Q and the points

diametrically opposite to them is 8 2
i/(a

-
b) sin 2<j>. (629)

44. If the normal at P meet the transverse and the conjugate axes in the

points (?, (?', respectively, prove that the middle point of CG is the centre

of a circle through P and the extremities of the minor axis ; and the middle

point of CO' the centre of a circle through P and the extremities of the

transverse axis.

45. If the product of the direction tangents of two lines touching an

ellipse be given, and negative, the locus of their poiut of intersection is an

ellipse.

46. If be the angle between a central vector to .and the normal at the

point <f>, prove

47. The lengths of the tangents from the point x'y to the ellipse

are roots of the equation in T,

'

.) (631)
o

ST

a2 - #x?la* = b2 + c2yi
2
jb

2
.
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Hence >>/a
z - T2

jS'
=

cx\\a,

and

but g'toltp 4 'vi/5
2= 1, .'. - A/ 2# '

y

48. A circle has double contact with an ellipse at the points P, P. Prove

that the sum of the distances of the points P, P' from either focus is half

the sum of the distances from the same focus of the points in which the

ellipse is intersected by any circle concentric with the former. (Ibid.)

49. If from any point on an ellipse tangents be drawn to the circle on the

minor axis, and if the chord of contact meet the major and the minor axes

in the points L, M respectively, prove,

-^ + -^_
2

. (632)
CL* CM*

~
b*

50. Find the locus of the middle points 1. of chords of a given length

in an ellipse. 2. Of chords whose distance from the centre is given.

51. Find the co-ordinates of the orthocentre of the triangle formed by
two tangents and the chord of contact.

If (a + ft) and (a j3) be the points of contact, the orthocentre is the

point common to the perpendiculars from
( + ft) on the tangent at (a

-
j8),

and from (o ft) on the tangent at (a + ft). Hence it is the intersection of

2a sin (a + ft) x - 25 cos (a 4- ft) y = e2 sin 2a + (a
2 + i2

)
sin 2)8,

and
2 sin (a

-
)
x - 2b cos (a

-
0) y = c2 sin 2a - (a

2 + b2
) sin 20.

From these we get by addition and subtraction

a cos o . x + b sin a . y = (a
2 + bz

) cos 0,

a sec a . * - b cosec a . y = c* sec ft.
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Hence

x = { (a
2

-f i2
) sin2 a + c2 sin2

} /a cos a cos 0, (633)

y = { (a
2 + i2) cos2 $ - cz cos2 a} /4 sin a cos /3. (634)

52. The sum of the squares of the perpendiculars from the extremities of

any two conjugate semidiameters on any fixed diameter is constant.

53. If CP, CF he two semidiameters of an ellipse ; CD, CD' their con-

jugates ; prove, if PP' pass through a fixed point, that DEf also passes

through a fixed point.

54. The locus of the points of contact of tangents to a system of confocal

ellipses from a fixed point on the transverse axis is a circle.

x2 2

56. If x cos a + y sin a - p = he a tangent to - + ^ - 1 = 0, prove,

pz = a* cos2 a + b2 sin2 o. (635)

56. If the circle a;
2 + y

z + Igx + Ify + c = passes through the extremi-

ties of three semidiameters of the ellipse

prove that the circle

*2 + y
2 + x -^ y - (a

2 4 J2 + c)
= 0.

a o

passes through the extremities of the three conjugate semidiameters.

(R. A. ROBERTS.) (636)

57. Show that if the first circle in Ex. 56 he orthogonal to a;
2 + y

2 - 2o*

23y + c' = 0, the second is orthogonal to

_ + a* + 42 _ e
> B o. (Und.) (637)

68. A triangle is inscrihed in the ellipse

prove, if *', y' he the co-ordinates of its centroid, and *, y those of the

circumcentre,

16 (a
2*2 + y) + 9c + - 12c2 (xaf

-
yy')

- c< = 0.

(Ibid.) (638)
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59. If a', V be conjugate semidiameters, making angles

semiazes, prove
ffl'2_J'2 cog

247

with the

(639)

60. If the rectangle contained by the perpendiculars on a variable line

from its pole, with respect to a given ellipse, and from the centre of the

ellipse, be constant, the envelope of the line is a confocal ellipse.

61. If S, S' be confocal conies, and PT, FT tangents to S, and PV a tan-

gent to -S", then the angle TVT' is bisected by PV. (M'CAY.)

Let the normal VU at V to 8 meet TT' produced in U. Then, since 8, S'

are confocal, the pole of PV with respect to S is on the normal VU. Again

the pole of PV with respect to S must be on the line TT'. Hence U is the

pole of PV, and the pencil (P. T'TUV) is harmonic. Hence V. T'TPU is

harmonic, and the angle PVTJ is right. Hence T' VT is bisected.

62. If a conic have double contact with S and one focus on S', the other

focus must also be on S".

63. If PP be a diameter of an ellipse, prove that the locus of the inter-

section of the normal at P with the ordinate at P' is

(640)
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64. The circle whose diameter is any chord, parallel to the conjugate
axis of

X* 1,1
t y i

has douhle contact with the ellipse

a2 + 4
(641)

65. If focal vectors from any point P meet the ellipse again in Q and 5,
and if the tangent at P make an angle 9 with the transverse axis, and the

line QR an angle <f>, prove

1 ez

tan <* =
,
-- tan 0. (642)
1 + e*

66. If .Fbe the focus, and A one of the extremities of the transverse axis

of a given ellipse E, prove that the major axis of a conic passing through F,
whose focus is A, and directrix any tangent to the ellipse is constant, and
that the envelope of its second directrix is a conic whose foci are on the

transverse axis of E.

67. Being given two confocal ellipses, prove that the distance between
the point <p on the first and the point <p' on the second is equal to the dis-

tance between
<p' an the first and

<p on the second. (Ivoay.)

68. If from an external point a secant ORE be drawn, cutting the

ellipse in B, R' ; then if 00* = OS . OR', the locus of Q is an ellipse.

69. If t, t' be the lengths of tangents from any point P to an ellipse, b, V
the parallel semidiameters, and p, p the focal vectors of P, prove that

tt' + bb' = pp'. (643)

70. Two chords, C\, C-z of an ellipse are at right angles, and touch a con-

focal ; prove that 1/Ci + 1/Cz is constant.

71. If normals at A, B, C, D meet in M, and intersect the ellipse again
in A', B', 0', I/, prove that the latter points lie on an equilateral hyperbola,

and touching at M the Appolonian hyperbola through A, B, C, D.

72. If the angles which any two conjugate diameters subtend at any point

of the ellipse be denoted by A, A.', respectively, then

cot2 A + cot2 A' = (a
2 - 2

)

2
/4a

2i2 . (644)

73. If a normal to an ellipse be parallel to one of the equiconjugate

diameters, it cuts the ellipse again at a minimum angle.

(PaoF. J. PURSER.)
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74. Two parallel focal chords of an ellipse meet it in the points G, H,
on the same side of the transverse axis ; if the join of G, H make intercepts

A, /i on the axes, prove

75. If two normals to an ellipse cut at right angles, the intercepts made

on them by the ellipse are divided proportionally at their point of intersec-

tion. (PROF. J. PURSER.)

76. Prove that if a parabola be described with a point on an ellipse as

focus, and the tangent at the corresponding point on the auxiliary circle as

directrix it passes through the foci of the ellipse. (Ibid).

77. If I'M, F'M' be parallel focal vectors, the tangents at M, M' meet in

a point P of the auxiliary circle, and the angle IFF' = % (FMF' + FM'F').

(LONGCHAMPS.)

78. In the same case the locus of the point of intersection of MF', M'F
is a confocal ellipse. (Ibid.)

79. If an ellipse and a hyperbola have a pair of conjugate diameters,

common both in magnitude and direction, each curve is its own reciprocal

with respect to the other.

80. Construct an ellipse, being given 1 a focus, and three points, 2 a

focus, and three tangents.



CHAPTER VII.

THE HYPERBOLA.

187. DBF. i. Being given in position a point S, and a line

NN', the locus of a variable

point P, whose distance from N M
8 has to its perpendicular

distance from NN' a given

ratio e greater than unity,

is called a HYPERBOLA.

DBF. ii. The point 8 is

called the FOCUS
;

the line

the DIRECTRIX, and

the ratio e the ECCENTRICITY of the hyperbola.

188. To find the equation of the hyperbola.

1. Take the focus as origin, the line through 8, perpendicular
to the directrix, as axis of x, and a parallel to the directrix

through 8 as the axis of y ;
also denote the perpendicular 80

from 8 on the directrix by /; then, denoting the co-ordinates of

P by x, y, we have SP* = a;
2
+y

2
,
and PN= x +/; but (Del i.)

SP+ PN=e; therefore

*2 + y
2 = <!

2

(#+/)
2
. (646)

2. In equation (646) put

X = X -

and we get

'-1 (I-)
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Hence, if C be the new origin, we have

Now, putting y = in (i.), we get

(
-

1)
2 '

giving for x two 'values equal in magnitude, but of opposite

signs. Hence, denoting the points where tlie hyperbola cuts

the axis of x by A, A', we get CA =
z ,

CA' = -
-^

-.

Hence AC = CA
;
therefore the line A'A is bisected in (7, and

denoting it by 20, we have

a =^. (m.)

Again, putting x = in (i.), we get

y =
~^T~i*

This gives two imaginary values for y, viz.

showing that the hyperbola does not cut the axis of y.

DBF. in. The line AA 1
is called the TRANSVERSE AXIS of the

ef
hyperbola; and if we make CB = B'C = -

,
the line BB' is

J*
2 -l

called the CONJUGATE AXIS, and the point C the CENTRE. The

line B'B is denoted by 25.

ef ef
3. Since a = .

,
I = .

z
.

, equation (i.) can be
(e

-
1) (e 1;*

written

This is the [standard form of the equation of the hyperbola.



252 The Hyperbola.

DBF. IT. The double ordinate LL' through 8 is called the

LATUS BECTUM of the hyperbola.

189. The following deductions from the preceding equations

are important :

1. a 2 = a2 (/'-!).

If CS be denoted by c, c = ae.

CO = -.
e

For CO = CS-f = -f =-.
e* - 1

a2 + &2 = c\

0, and

e
z - 1

From 1 and 2.

5. Ctf . CO = a2
. From 2 and 3.

6. Latus rectum = 2a(e*- 1). For in (646) put x

we get SL =
ef\ therefore LL' = 2ef = 2a (e*

-
1).

7. The transverse axis : conjugate axis : : conjugate axis :

latus rectum. From 1 and 6.

8. Since from the form (647) of the equation of the hyperbola
each axis is an axis of symmetry of the figure, it follows that, if

we make CS' = SC, the point S' will be another focus; also,

if CO1 = OC, and through 0' aline MM' be drawn perpendicular

to the transverse axis, MM' will be a second directrix, cor-

responding to the second focus S'.

DBF. y. If the semiaxes a, b of a hyperbola be equal, the curve

is called an EQTOLATERAL HYPERBOLA.

EXAMPLES.

1. Given the base of a triangle and the difference of the sides, find the

locus of the vertex. -n

Let S'SP' be the triangle ;
let the base

88' = 2e, and the difference of the sides

equal la. Let S'S produced be taken as

axis of x, and the perpendicular to S'S at

its middle point as axis of y ; then, if x, y
be the co-ordinates of P, we have

= {(x + c)
2

*, SP= {(x
-
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therefore { (* + o) + y
2
}*
-

{ (*
-

e)
2 + f} * = 20 ; (i.)

or cleared of radicals,

(c
z - a2

)
*2 - V = a* (# - a2

) ;

or putting

<7or. 1. &?=*- a. (648)

For in clearing (i.) of radicals, -we get

{(*-c)
2

-f y*}*
= ex - a?

\

that is, a . SP aex a2 .

Cor. 2. 'P=e# + a.

2. Given the hase of a triangle and the difference of the hase angles, the

locus of the vertex is an equilateral hyperbola.

3. Given the base of a triangle, and the ratio of the tangents of the halves

of the base angles, the locus of the vertex is a hyperbola.

4. The locus of the centre of a circle, which passes through a given point

and cuts a fixed line at a given angle, is a hyperbola.

5. Trisect a given arc of a circle by means of a hyperbola.

6. If the base of a triangle be given in magnitude and position, and the

difference of the sides in magnitude, then the loci of the centres of the

escribed circles which touch the base produced are the two branches of a

hyperbola ; and the loci of the centres of the inscribed circle, and the

escribed which touches the base externally, are the directrices of the same

hyperbola.

7. If in Ex. 6, Art. 119, the " Boscovich Circle
"

cut the line NN', show

that the locus of P will be a hyperbola.

8. CB is a fixed diameter of a given circle
;
and through a fixed point A

in CB draw any chord .7)2? of the circle ; join CD, and on CD produced, if

necessary, take CF = AE : the locus of the point F is a hyperbola.

HAMILTON.

9. ABCD is a lozenge whose diagonals are 2, 25, respectively ; prove, if

the diagonals be taken as axes, that the locus of a point P, such that the

rectangle AP . CP = the rectangle BP . DP, is the equilateral hyperbola

a2 - b*
*2 -2/

2 =
2

. (649)

10. OX, OF are the axes, A, A' two fixed points on OX on different sides

of 0, A, A' are joined to any point I on Y; then if a perpendicular APto
AI meet _4'J produced in Pthe locus of Pis a hyperbola.
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190. To express the co-ordinates of a point on the hyperbola by
a single variable.

Let AA', BB' be the transverse and conjugate axes, upon
AA' as diameter describe a circle. Let P be any point in the

hyperbola, MP its ordinate, MT a tangent to the circle on AA'.

Then denoting the angle MOT by <f>
we have xja = sec

<f> ;

.-. yjb = tan
<f>.

Hence the co-ordinates of P are

a sec <, b tan
</>. (650)

Cor. l.MT:MP::a: b.

Cor. 2. If PJVbe parallel to CT, J/JVis = i.

Cor. 3. If p be the radius vector from the centre to any

point P of the hyperbola

P = a <l+e* tan2<. (651)

Cor. 4. If the equation of the hyperbola be written in the

form

1,
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/ A 1/\

we may put
-

r )

= tan 0,
\a b

%fa b

from which we get

x = a cosec 20, y = I cot 20. (652)

191. The focus of the middle points of a system of parallel

chords of a hyperbola is a

right line.

Let the equation of one

of the chords be

y/b = mx/a + n.

Now, if m be constant

and n variable, this will

represent a line which

moves parallel to itself
;
and eliminating y between it and the

equation of the hyperbola, we get

(1
- w2

)
x2 - 2mnax - tfri

1 - a? 0.

Similarly, by eliminating x, we get

(1
- w2

) y
2 - 2nly + bW - b*mz = 0.

Hence the equation of the circle, whose diameter is the intercept

which the hyperbola makes on the line

y/b = mx/a + n,

is (1
- w2

)0
2 + y

z
)
- 2mnax - 2nby

-
(a?

- i2
)
nz - tf -mW = 0.

(653)

Now, if the co-ordinates of the centre of this circle be a/, y
f

,
we

get
mna nb

x = ;
-

=> y =
*

;
-

=>
--

;.
1 - m* 1 - m2

Hence, eliminating n and omitting accents, the locus~j)f the centre,

that is of the middle point of the chord, is the diameter

yfb = x/ma. (654)

This is the line QQ! in the diagram.
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Cor. 1 . If a line be drawn through the centre parallel to

PP1

, or, in other words, a diameter conjugate to QQ', its equa-

tion must contain no absolute term
;
hence its equation is

y/b = mx/a. (655)

Hence the product of the tangents of the angles, which two

conjugate diameters make with the transverse axis of a hyper-

bola, is iz/
2
-

Cor. 2. If the line PP' move parallel to itself until the

points P, P1 become consecutive, then PP' becomes a tangent

such as at Q ;
and if the co-ordinates of Q be x'y' we must

have

y'/b
= mx'ja + n

;

and since the line QQ' passes through it, we must have (478)

y'/b
= x'/ma.

Hence m =
bx'/ay', n = -

b/y', 9

which, substituted in y/b = mx/a + n,

gives ^-f/=1
' (656 )

which is the equation of the tangent.

Cor. 3. The equation of the tangent at the point < is

X I/

j-
sin

<f>
= cos <. C65?)

Cor. 4. To find the equation of the chord of contact of

tangents from the point hk.

Let x'y', x"y", be the points of contact; then, since the

tangent at x'y' passes through hk, we have

M Icy
1

~~2 12
= *'

fl
2 O2

Jur" lt.li"

Similarly, y-f-" 1 -

Hence it is evident that the line

hx
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passes through each point of contact, and therefore must be the

chord required.

Cor. 5. If two diameters QQ,', RR of the hyperbola be such

that the first bisects chords parallel to the second, the second

also bisects chords parallel to the first.

Observation. It is not necessary that both extremities of the chord PP
should be on the same branch of the hyperbola ; the chord may take the

position^', -where they are on different branches.

192. DEP. It has been proved that if we construct the hyper-

bola

whose axes are AA, BB',

it will be the figure HHHH
in the diagram. Again, if

we construct the hyperbola,

which has BB' for its trans-

verse axis, and AA' for its

conjugate axis, it will be the figure H'H'H'H' in the diagram.

This secondfigure is called the CONJUGATE HYPERBOLA.

If instead of hk we put x'y', we see that the chord of con-

tact of tangents, from x'y' to the hyperbola, is

_ _ ML. _ 1
z

b*
=

(659)

Cor. 6. If through any point x'y' a chord of the hyperbola

be drawn, the locus of the intersection of tangents at its extre-

mities is

xx' yy'

Cor. 7. The line

= 1.

_ _ ML =
a* bz

~

is such that any line passing through x'y' is cut harmonically by
it and the hyperbola.
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193. To find the equation of the conjugate hyperbola.

If the line BB' were the axis of x, and AA 1 the axis of y ;

since BB' is the transverse axis and AA' the conjugate axis,

the equation of the figure H'H'H'H' would be ( 188),

Hence, interchanging x and y, the required equation is

iC
a

t/
9

y- I. (660)

Cor. 1. If CQ, C# be conjugate diameters with respect to

the hyperbola 5", they are conjugate diameters with respect to

the hyperbola H'.

For the required condition with respect to

=
( 191, Cor. 1);

therefore tanBCR .

Hence the proposition is proved.

Cor. 2. The tangent at R to the hyperbola H' is parallel to

For the diameter RR' of H' bisects chords parallel to
7

,
and the tangent R is a limiting case of a chord.

Cor. 3. If the co-ordinates of Q, be x'y', the co-ordinates

of R are
^-', y. (661)

For these satisfy the equation (660) of the hyperbola H' and

the equation of the line RR' is

xaf yy'
~r IT = -

o2 b*

Cor. 4. If the conjugate semidiameters CQ, CR be denoted

by a', V, respectively, then a" - b'
2 =a2 - bz

. (662)
a 2 V2

For o'
2 -i'2

/ /72 */2\ fJfir1* \
=

(*'

2 - -

)

-^ -
r*J

= 2 - i2
,
from (647).
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Cor. 5. Every diameter of an equilateral hyperbola is equal

to its conjugate.

Cor. 6. The area of the triangle QCR = %ab. (663)

For the area

lot
, ay'\ (x'

2
/'
2>

a 6 J \a2

Hence the area of the parallelogram, whose two adjacent sides

are two conjugate semidiameters, is constant. -

Cor. 7. The equation of the line QR is

X b
'

J\a b

Hence QR is parallel to the line

a b

Cor. 8. The equation of the median, which bisects QR, is

x v
- -

f
= 0. (664)a b

194. To find the equation of an hyperbola referred to two

conjugate diameters.

Let CQ, CR be two conjugate semidiameters (see fig., 191),

and take CQ, CR as the new axes of x, y. Let x, y be the old

co-ordinates of any point P of the hyperbola, x'y' the new
;
then

denoting the angles QCA, RCA by a, /?, respectively, we have

x = x' cos a + y' cos ft, y = x' sin a + y' sin ft.

Substitute these values in the equation fix2 - a2y
2 = a2b2 ; then

a/
2

(S
2 cos2a - a2 sin2a)

-
y'* (a

2 sin2/?- b2 cos2

/?)

+ x'y' (b
2 cos a cos ft

- a2 sin a sin /?)
= a2 b2

;

but, since CQ, CR are conjugate semidiameters,

b2

tan a tan /3
=

a2

82
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( 191, Cor. 1). Hence the coefficient of x'y' vanishes, and the

equation may be written

n (I
2 cos2a - a2 sinV\

,2 (a?
sin2

/?
- fr cos2/?\

*
\ T }~

y
\ ~#V~ ~)

= 1 -

Now, when y'
=

0, we have x' = CQ. Hence, denoting CQ by

a', we have
2z

=a =- .

b2 cos2a - a2 sin2a

Again, if R be the point where CR meets the conjugate hyper-

bola ( 192), we get

a2 b2

CR*
o2 sinzj3

- b 2 cos2/?
'

and, denoting this by I'
2
,
we see that the equation can be

written

or, omitting accents on a/, y',

J -
|j

= 1. (665)

This is the same in form as the equation referred to the trans-

verse and conjugate axes. (Compare 155.)

Cor. 1. The equation of the tangent, when the hyperbola is

referred to a pair of conjugate dia-

meters as axes, is

xx1
vu'
5L _ i - o
A2

'

C
for, taking two points x'y

1

, x"y" on

the hyperbola, the curve

_
b2
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evidently passes through both points. Hence the chord joining

both points is

and, if the points become consecutive, this reduces to

"' -
?
- 1. (666)

fl
2 2

Cor. 2. If the tangent at E meet CP in T, CN . CT = CP*.

Cor. 3. The tangents at the extremities of any chord meet

on the diameter conjugate to that chord.

Cor. 4. The line joining the intersection of two tangents to

the centre bisects the chord of contact.

EXERCISES.

1. If a chord of a circle be parallel to a line given, in position, the locus

of a point which divides it into parts, the sum of whose squares is constant,

is an equilateral hyperbola.

2. If CP, CD be any two semidiameters of a hyperbola, PN, DM tan-

gents meeting CD, CP in N and M, respectively ; triangle CPN = CDM.

3. In the same case, if FT, DE be parallels to the tangents meeting CD,
CP produced in T and E ; the triangle CDE = OPT.

4. If a quadrilateral be circumscribed to a hyperbola, the join of the

middle points of its diagonals passes through the centre.

5. If AS be any diameter of a hyperbola, AE, BD tangents at its extre-

mities meeting any third tangent in E and D, the rectangle AE . BD is

equal to the square of the semidiameter conjugate to AB.

6. If in the fig. of Ex. 5, CD, CE be drawn meeting the hyperbola and

its conjugate in D' and E'; CD', CE' are conjugate semidiameters.

1. Diameters parallel to a pair of supplemental chords are conjugate.

8. Find the condition that the line \x + py + v = shall touch the

hyperbola.
Am. 2\2 - 5V - "2 = 0,

which is the tangential equation of the hyperbola.
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9. If AA' be any diameter of an ellipse, PP' a double ordinate to it ; if

AP, A'P' be produced to meet, the locus of their point of intersection is a

hyperbola.

10. Tangents to a hyperbola are drawn from any point in one of the

branches of the conjugate hyperbola ; prove that the envelope of the chord

of contact is the other branch of the conjugate hyperbola.

195. To find the equation of the normal to the hyperbola at the

point x'y' .

The equation of the

tangent at ttfy' is

^ _ WL = i

a9 b*

Hence the equation of

the perpendicular to

this at x'y' is

F +
9-'- (667)

which is the equation of the required normal.

Cor. 1. In equation (667) put y = 0, and we get

ca = y.

Hence

(668)

(669)

Cor. 2.P6P = PM2 + MGZ =
y'

2 + (e*
-

I)
2
a/

2 =
(after an

easy reduction) to

Hence

In like manner,

Hence

- a

(670)
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Cor. 3. If p, p' be the focal vectors to P,

G'P.PG =
pp'. (671)

Cor. 4. In an equilateral hyperbola

PG = G'P. (672)

Co/. 5. If CR be the semidiameter conjugate to CP,

G'P . PG = CR* = '2 =
pp'. (673)

(?or . 6. If CL be perpendicular to the tangent at P,

CL.PG = b\ CL . G'P = a\

EXERCISES.

1. The points G', P, T and the two foci are concyclic.

2. A right line parallel to the conjugate axis of a hyperbola meets it and

its conjugate in the points M, JV; show that normals to these curves at the

points M, N intersect on the transverse axis.

3. If the hyperbola be equilateral, and if CL produced meet the curve in

L', prove CL . CL' = a2 .

->- 4. If through the points Gf, G' parallels be drawn to the axes, the locus

of their intersection is a hyperbola.

5. In an equilateral hyperbola half the difference of the base angles of

the triangle SPS' is equal to one of the angles which CP makes with SS'.

6. If from any point in a hyperbola perpendiculars be drawn to the axes,

the join of their feet is always normal to a hyperbola.

7. If through the point T, where the tangent at P meets the transverse

axis, a parallel to the conjugate axis be drawn meeting the join of the

points A, P, in J, the locus of / is an ellipse, having the same axes as the

hyperbola.

8. If the co-ordinates of a point on the hyperbola

8

be denoted by a sec
<j>,

b tan
<j>, prove that the co-ordinates of the intersec-

tion of normals at the points (a + j8), (a j3) are

c2 cos 3
'

cos a cos (a + 0) cos (-)' b
- - tan a. tan (a -f 0) . tan (a

-
0). (674)
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9. The co-ordinates of the point of intersection of two consecutive nor-

mals are
-2 2

- sec3a, - r tanso. (675)
a o

10. The locus of the centre of curvature of the hyperbola is

(*)! - (fy)
= ct. (676)

196. The feet of the normals that can le drawn from any point

to an hyperbola lie on an equilateral hyperbola.

If hk be the points whence normals are drawn to a?I
a*- y

z
/b*= 1,

the feet of normals lie on the hyperbola

a*hjx + miy = c\ (677)

See Demonstration of 179.

Cor. 1. Four normals can be drawn from any point to an

hyperbola.

Cor. 2. The equation of the normals from hk to the hyper-

bola is

aV - iy (kx
-

hy}*
= c*a?y\ (678)

Cor. 3. The product of the abscissae of each pair of opposite

vertices of the complete quadrilateral formed by tangents to an

hyperbola at the feet of normals from any point hk is equal to

- a* and the product of the ordinates = bz .

Cor. 4. If the foot of one of the four normals be the point

x'y' the triangle formed by the tangents at the feet of the three

others is inscribed in the hyperbola

*7* + y'lV +1=0. (679)

197. JOACHIMSTHAL'S CIBCLI;.

Iffrom any point hk in the normal at the point x'y' of an hyper-

bola, three other normals be drawn, the feet lie on the circle

a? + y* + xz' + yy'
- u (xx'/a*

-
yy'/b* + 1 )

= 0, (680)

where u = a2 - bzk/y
f =

a*h/x'
- b\
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This is called JOACHIMSTHAL'S CIRCLE of the hyperbola. The

proof may be inferred from 180 by changing the sign of I*.

Cor. 1. Joachimsthal's Circle passes through the point
- x' - y' on the hyperbola.

Cor. 2. Joachimsthal's Circle passes through the foot of the

perpendicular from the centre on the tangent at a/ y'.

198. To find the lengths of the perpendiculars from the foci on

the tangent at any point of the hyperbola.

If the co-ordinates of the point P be a sec
<j>,

b tan
<f>,

the

equation of the tangent

is

x sec <f> y tan <6
__ ^ v __ ^ I II

a b

and the co-ordinates of

the focus S are ae, 0.

Hence the perpendicu-

lar

SL = b
feSeC *~
e sec

</> +

or denoting the focal vectors by p, p',

-1 &
\P

&C-* 5- (681)

Similarly, S'L'=b J-. (682)

Cor. 1. SL . 8'L' = b\ (683)

* b
Cor. 2.SL + p = 7= =

JT;. ( 195, Cor. 5.) (684)
VPP

Cor. 3. The tangent at P bisects the internal angle at P of

the triangle SPS', and the normal bisects the external angle.
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Cor. 4. Since the angle SPIT is bisected by PL, we have

SL = LH, and SO = CS', because C is the centre. Hence

CL = $S'H= it (&P -SP) =
a-,

therefore the locus of L is the auxiliary circle.

Cor. 5. If a line move so that the rectangle contained by

perpendiculars on it from two fixed points on opposite sides is

constant, its envelope is a hyperbola.

Cor. 6. The first positive pedal of a hyperbola, with respect

to either focus, is a circle.

Cor. 7. The first negative pedal of a circle, with respect to

any external point, is a hyperbola.

Cor. 8. The reciprocal of a hyperbola, with respect to either

focus, is a circle.

199. The rectangle contained by the segments of any chord pass-

ing through a fixed point in the plane of the hyperbola is to the

square of the parallel semidiameter in a constant ratio.

The proof is the same as that of the corresponding propo-

sition ( 184) for the ellipse, and similar inferences may be

drawn.

EXERCISES.

1 . If an equilateral hyperbola pass through the angular points of a tri-

angle, it passes through the orthocentre.

2. The locus of the centres of all equilateral hyperbolas described about

a given triangle is the '

nine-points circle
'
of the triangle.

3. If P be any point in an equilateral hyperbola whose vertices are A, A',

prove that the normal at P and the line CP make equal angles with the

transverse axis.
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200. To find the polar equation of the hyperbola, the centre being

pole.

Let .2" be the hyperbola,

A'A its transverse axis, and

B'S its conjugate axis, P
any point in the curve

;

then, if x, y be the rect-

angular co-ordinates of P,

p, 0, its polar co-ordinates,

we have

x = p cos 6, y = p sin
;

and, substituting these in the equation of the hyperbola, we get

1 cos2 6 sin2 6

ft
2

Hence (685)

which the polar equation required.

Cor. 1. The polar equation of the conjugate hyperbola H' is

bz

P-
I - e* cos2 6'

(686)

Cor. 2. If the hyperbola be equilateral, 52 = a2
,
and the polar

equation is

p
2 cos 26 = a2 . (687)

Cor. 3. If in equation (685) the denominator, e2 cos2 -
1,

vanish, we get p
2 =

infinity ;
therefore p =

infinity ;
but if

I* b
e2 cos2 6-1 = 0, we get tan2 6 = and tan = -. Hence, if

a* a

DD' be erected at right angles to CA, and if AD and D'A be

made each equal to b, and CD, CD' joined, these lines produced
both ways will each meet the curve at infinity.



268 The Hyperbola.

Cor. 4. The equations of the line CD, Cl? are respectively

- -
^ = 0,

- + | = 0. (688)a 6 a I

Each of these lines touches the curve at infinity, or, in other

words, is an asymptote. ( 153.)

For the tangent at x'y' may be written

x yy' _ 1

a2 4V
"

y!'

Now, if x'y' be the point where the line - - \ = meets the
a o

y' I
curve, we have : = -. Hence the tangent may be written

x a

x y a x y
-7
= or - = 0, since x1

is infinite.
a o x a o

Cor. 5. Since the product of the equations of the two asymp-
x2 yz

totes (688) is -
^-

=
0, we see that the equation of the hyper-

bola differs from the equation of its asymptotes only by the

absolute term. ( 153, Cor. 1.)

Cor. 6. The asymptotes of an equilateral hyperbola are at

right angles to each other. On this account the equilateral

hyperbola is also called the rectangular hyperbola.

Cor. 7. The secant of half the angle between the asymptotes
is equal to the eccentricity.

Cor. 8. The lines joining an extremity of any diameter to

the extremities of its conjugate are parallel to the asymptotes.

201. To find the equation of the hyperbola referred to the asymp-
totes as axes.

Let .ZTbe the hyperbola, CX', CT' (see last fig.) the asymp-

totes, P any point in the curve
;
draw PM' parallel to CT'

;

then, denoting CM'
, M'P, the co-ordinates of P with respect to
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the new axes, by x'y', and half the angle "between the asymptotes

by a, we have, since CM= CO+M'N', and PM=PN'-M'N',

x =
(x' + y

1

} cos a, y = (y
1 -

x') sin a
;

and substituting in the equation

we get

(x' + y'J cos2 a _ (y
1 -

x'J sin2 a _

But sec a = e. ( 200, Cor. 7.)

Hence

cos2 a = sin2 a =
;

therefore (x' + yj -
(y'

- xf

}
z = a? + i2

,

or 4x'y'
= az + b2

and omitting accents, as being no longer necessary,

xy =
(a? +

2

)/4, (689)

which is the required equation.

Cor. I . The area of the parallelogram formed by the asymp-

totes, and by parallels to them through any point in the curve,

is constant.

Cor. 2. Since the product xy is constant, the larger x is, the

smaller y will be, and conversely ;
hence the hyperbola con-

tinually approaches its asymptotes, but never meets them, until

it goes to infinity, where it touches them.

EXERCISES.

1. A variable line has its extremities on two lines given in position and

passes through a given point ; prove that the locus of the point in which it

is divided in a given ratio is a hyperbola.
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2. From a point P perpendiculars are let fall on two fixed lines
;

if the

area of the quadrilateral thus formed he given, prove that the locus of P is

a hyperhola.

3. If any line cuts a hyperhola and its asymptotes, prove that the intercepts

on the line between the curve and its asymptotes are equal.

4. If a variahle line form with two fixed lines a triangle of constant area,

the locus of the point which divides the intercept made on the variable line

in a given ratio is a hyperhola.

5. If two sides of a triangle be given in position, and its perimeter given

in magnitude, the locus of the point which divides the base in a given ratio

is a hyperbola.

6. The equation of a hyperbola passing through three given points, and

having its asymptotes parallel to two lines given in position, is

xy, x,

x'y', x',

x"y", x",

x'"y'", x'",

0. (690)

the axes being the lines given in position.

If the lines given in position be denoted by S = axz + 2hxy + iy
2 = 0, the

equation will be

S, x, y, 1,

1,

(691)
S", x",

S'", x'" t

y,

y",

y'"

0.

7. The equation xy = K2
, being a special case of the equation LM= JK2

( 160), the co-ordinates of a point on the hyperbola can be expressed by

a single variable. Thus x = k tan <p, y = Jc cot
<f>.

This will be called the

point <p.

8. Prove that the equation of the join of the points <p', <j>" on the hyper-

bola is

x y

tan <p' -f tan <f>" cot
<f>' + cot </>"

+^' . L
x + x y + y

9. The intercepts on the axes are x' + x", y' + y".

*,

(692)

(693)
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10. The tangent at the point < is

x cot</> + y tan = 2k, or -, + -, = 2. (694)

11. The area of the triangle formed hy the asymptotes and any tangent

to the hyperbola = 2JP.

12. If a variable point xy on the hyperbola be joined to two fixed points,

the intercept on the asymptotes made by the joining lines is constant.

13. The co-ordinates of the point of intersection of tangents at $', <j>",

are

?*_T, -r. (695)
cot

<j>'
+ cot

<j>
tan

<J> + tan
</>

*14. The area of the triangle formed by tangents at the points <f>', <f>",

"'
is

sin
(<(>' + <f>")

sin (<" + <(>'")
sin (<p'" + <p')

15. The normal at the point </>
is x tan $ - y cot

<j>
= k (tan

2
</>

- cot2
<j>).

16. The four normals from the point a)3 to the hyperbola xy = kz, have

the tangents of the parametric angles of their points of meeting the hyper-

bola connected by the relation k (tan* 1
)
= o tan3

<p f3 tan <.

17. The intersection of normals at the points x'y', x"y" are

x'
z + x'x" -t- x"2 + y'y" y"*+ y'y" + y"

z + x'x"

x' + x" y' + y"

18. The co-ordinates of the centre of curvature at the point x'y' are

Zx'z + y'* By'* + x"*

(697)

2x' 2y'
(698)

19. The circle of curvature at x' y' meets the curve again in the point

whose co-ordinates are

a/2 v'
z

> (699)
y x'

20. The radius of curvature at x'y' is (x'
z + y'

z
)l

-=- 2k*. (700)

21. Given any two conjugate semidiameters OP, OQ of an hyperbola to

find its axes in direction and magnitude.

The asymptotes will be the median of the triangle OPQ which bisects PQ,
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and the parallel through to PQ, then the axes are the bisectors OX, OY
of the angles between the asymptotes. Through Q draw QM, QN parallel

to the asymptotes meeting OX in M and N, and take OA a mean propor-

tional between OM, ON. Then A is one of the summits of the hyperbola.

DEM. Join AQ and produce to meet the asymptotes in H, K. Since

QM, QN are parallel to the asymptotes

AK: QK:: OA : ON, and HQ : HA : : OM: OA, but OM : OA : : OA : ON.

Hence AK :QK:: HQ : HA .-. AK = HQ,
and since Q is a point on the hyperbola, A is a. point on it. Hence A is a

summit.

The foregoing construction is, with slight alteration, taken from Long-

champ's Gdometrie Analytique, tome 2, p. 470.

202. To find the polar equation of the hyperbola, the focus being

pole.

Let SP =
p, the angle ASP = Q. (See fig., 188.)

Then SP = e PJV by definition
;

that is, p = e ( OS + SQ) = ef+ ep cos (TT
-

0),

or p = a (e
2 -

1)
-

ep cos 0.

Therefore

Cor. 1. If we put 6 = -, we get p = a (#
-

1) ;
but in this
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case p is half the latus rectum. Hence, denoting it by I, we

have

P =
;
-

-TV (702)
1 + e cos

CV. 2 The polar equation of the tangent at the point a is

1

(703)

at

Cor. 3. The polar co-ordinates of the intersection of tangents

a + /?, a - /?, are =
a, p = l\(e cos a + cos

/3). (704)

Cor. 4. The equation of the normal at a is

- e sin a = (1 +cosa) {e sin.0 + sin. (6
-

a)}. (705)
P

EXERCISES.

1. The equation of the chord joining the points (a + #), (a
-

8), is

I

p = ~~
.

e cos 9 + sec /3 cos (a
-

0)
(706)

2, If a be constant, and & variable, the chord joining the points (a + j8)

(a ft), passes through a fixed point.

203. To find the area of an equilateral hyberbola, between an

asymptote and two ordinates.

Let PQZ be the hyperbola :

OX, OYihe asymptotes. Bisect

the angle XOY by OP; draw

the ordinate PP' and ZZ'
;
then

denoting OP' by unity, and P'Z'

"by x the area enclosed by PP'

ZZ', P'Z', and the hyperbola,

= log, (1+ x).
P'Q'R' Z' X

Dem. Divide P'Z' into any number of parts n, in the

T
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points Qf, It', &c.
;

so that OP, OQ', OR', &c., are in geome-

trical progression, and draw the ordinates Q'Q, R'R, &c. Join

PQ, QR, &c. ;
also join OQ, OR. Now, denoting the co-ordi-

nates of the points P, Q, R by x'y'r x"y", x'"y'", we have area

of the triangle OQR

since y"'
= y

y

Hence area of triangle QR

or equal area of triangle OPQ. But it is easy to see that the

triangle OPQ is equal to the trapezium PP' Q'Q, and OQR equal

to the trapezium QQ'R'R. Hence the trapeziums are equal;
and therefore the whole rectilineal figure PPZ'Z is equal to

n times the trapezium PP'Q'Q. Again, we have OZ1 = OP'

+ P'Z' = 1 + x
;
and OQ = OP' + P'OJ = 1 + P'Q' and since

OP' OQ', . . . OZ' are in geometrical progression, and there are

n terms, we have (1 + P'Q)
n = 1 + x; therefore

P'Q' =
(1 + a)

-
1, and PP = 1.

Hence, when n is indefinitely large, the area of the trapezium

PP'Q'Q =
(1 + x)

- 1. Therefore the hyperbolic area PP'Z'Z
is equal to the limit of

w{(l+*)"- l}
= log,(l+#). (See Trig., p. 90.) (707)

Cor. 1. The hyperbolic sector OPZ=loge (l + x}. (708)
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Cor. 2. If AZ be an equilateral hyperbola, whose equation

is x2 -
y*

=
1, and if the co-ordinates

OM, MZ of a point Z be xy, the sec-

torial area

Dem. In the foregoing proof OP'

is taken to be the linear unit
;
but in

the general case it is evident that the

proposition proved is that the sectorial

area = OP'2 x log, (OZ' -f OP'}; but

it is easy to see that OZ' -f OP'

= (OM + MZ} -f OA, and OP'2 = %OA2
.

Hence the area of the hyperbolic

sector OAZ = '#
2
log, .

a

Hence, when a is unity, sectorial area

(709)

. 3. If u denote twice the sectorial area OAZ, then

" + f* e" - e~
u

2 2

For log, (x + y) = u
;
therefore e

u = x + y ;
and

1

(710)

y
= x-y.

DEF. x, y are called, respectively, the HYPERBOLIC COSINE and

HYPEKBOLIC SINE of u, and are denoted by the notation Chw, Shw.

(See Trigonometry, Chap, vni., sect, ii.)

Cor. 4. If v/- 1 be denoted by *',
Ghu = cos (ui), Shw

= \ '-. These follow from the values of
a?, y, and the tri-

i

gonometric expansions of cos (ui}, sin (ui}.

x2



276 The Hyperbola.

204. The other hyperbolic functions are denned as follows,

thus : OD = hyperbolic secant u = Sec hw, AT'=
hyperbolic

tangent u = Thw, BT' = hyperbolic Cotangent u = Cot h, (XE
1

= hyperbolic Cosecant u e Cosec hw.

From the known properties of the hyperbola we have imme-

diately the following relations :

1 Shw n .

Cot AM = ^, Cosec Aw =~7-, =
, ^, =

,Chw Chw Shw Sim

corresponding to the known relations of circular functions
;
and

from them can be constructed a theory of these functions. (See

Author's Trigonometry, Chap, vin., sect, ii.)

From the values Chw = cos (M), Shw = - 7 -, we see
i

sin <h
tliat if we put m =

</>,
we have x = cos <, y = r-^-

;
so that

^

the co-ordinates of any point on the equilateral hyperbola can be

denoted by the circular functions of an imaginary angle <. In

like manner, the co-ordinates of a point on the hyperbola

can be expressed in a manner analogous to the method of the

eccentric angle for the ellipse. Thus we can put

x y sin d>
- = cos<k |= r^; (711)
<l O li

and by these substitutions we could give proofs analogous to

those of the ellipse for the corresponding propositions of the

hyperbola.

The following exercises can be solved by using the imagi-

nary eccentric angle :
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EXERCISES.

1 . If the chord joining the points (a + ft), (a
-

ft) pass through the focus ;

prove
e cos a = cos 0. (712)

2. The tangents at the extremities of a focal chord meet on the direc-

trix.

3. In the same case, the line joining their intersection to the focus is per-

pendicular to the chord.

4. Prove that the eccentric angles of two points which are the extre-

7T

mities of a pair of conjugate semidiameters differ hy -.
m

5. Apply the method of the eccentric angle to the proof of the proposi-

tion that the locus of the middle points of a system of parallel chords is a

right line.

6. Find the equation of the hyperhola, referred to a pair of conjugate

diameters hy means of the eccentric angle.

7. The co-ordinates of the point of intersection of tangents at the points

(a + 18), (a
-

ft), are

a cos bi sin q

cos ft

'
cos ft

8. If a he variable and ft constant, the chord joining the points (a + ft),

(a ft) is a tangent to the hyperhola

9. In the same case, the locus of the intersection of tangents at the ex-

tremities of the chord is

yp ifi

_-|.
= sec*/J. (715)

10. If
<J>
he the angle hetween the tangents at (a + ft), (a

-
j8),

2abi sin ft

(a* + V) cos 2a - (a
2 - 2

)
cos 2ft

11. Find the locus of the pole of a chord which suhtends a right angle

at a fixed point hk.
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Let (a + 0), (a
-

) be the eccentric angles at the extremities of the

chord
; then the equation of the circle which has the chord for diameter is

(x-a cos a cos
)
2 + (y + bi sin a cos

)

2 = (a
2 sin2a - i2 cos2o) sin20,

and evidently hk is a point on this circle ; hence

(A
- a cos a cos 0)

2 + (
k+ bi sin a cos

)

2=
(a

2 sin2o - i2 cos2a) sin2/3,

or

A2 + A2 - 2 (a cos a cos )8) A + 2 (it sin a cos 0) A + a2 (cos
2 - sin2a)

Now, if*, y be the co-ordinates of the pole of the chord joining (a + /3),

(a
-

0), we have

a cos a = x cos 0, bi sin a = y cos ;

therefore

A2 + A2 - (2A*+ 2&y - a2 + i2
) cos2 - a* sin2a + i2 cos2a =

;

or, eliminating a,

a2 ,2 M ~2

A2 + A2 -
(2A^ + 2ky - a2 + i2

)
-

f- + 1-f cos2)3 = 0.
o a*

Hence, eliminating j3, we get

-^0, (717)

which represents a hyperbola, a parabola, or an ellipse, according as the

point hk is outside the auxiliary circle, on it, or inside it.

12. The discriminant of this equation (717) is the product of the two

factors

b"- A2 - a1 tf - (fib* and A2 + A2 - (a
2 - i2

).

Hence we infer that the locus will break up into two lines if the co-ordi-

nates hk satisfy the equation of the hyperbola. In other words, if a chord

of a hyperbola subtend a right angle at any fixed point on the curve, the

locus of its pole consists of two right lines.

From the factor A2 + kz
(a

2 b2
)
= we infer that, if the chord sub-

tend a right angle at any point on the orthoptic circle, its pole will be the

same point.
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Exercises on the Hyperbola.

1. The perpendicular from the focus on either asymptote is equal to the

semiconjugate diameter.

2. If e, e' be the eccentricities of a hyperbola and its conjugate, prove

T + i-1. (718 >

e2 d*

3. The equations of the asymptotes, with the focus as origin, are

\*\- (719>

4. If SP be parallel to an asymptote, P being a point on the curve ;

prove

SP =
\.

(720)

5. If from a point K in the transverse axis a perpendicular EL be drawn

to an asymptote, and a normal KM to the curve, prove that LM is perpen-

dicular to the transverse axis.

6. An ellipse referred to the equal conjugate diameters being

a- + P
2

prove that it is confocal with the hyperbola

cfi b^

xy = . (CB.OFTON.) (721)
4

7. Also, this hyperbola cuts orthogonally all conies passing through the

ends of the major and minor axes of the ellipse in Ex. 6. The general

equation of these conies is

[n2a _ ^_+l
2

. (Ibid.) (722)

8. The chord of contact of two tangents to a hyperbola is parallel to, and

half way between, the lines joining the intersections of tangents with the

asymptotes.

9. The locus of the centre of a variable circle which makes given inter-

cepts on two given lines is a hyperbola.
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10. If from any point P on a given line tangents be drawn to the

ellipses

the locus of the intersection of their chords of contact is an equilateral

hyperbola.

11. If <p, <j>', <p", <'" be the parametric angles of four concyclic points on

the hyperbola xy = A-
2
, prove

tan <p . tan $'. tan <p". tan <p'"
= 1 . (723)

12. The product of the perpendiculars from four concyclic points of a

hyperbola on one asymptote is equal to the product of the perpendiculars on

the other asymptote.

13. If the extremities of a chord of an ellipse which is parallel to the

transverse axis be joined to the centre and to one extremity of that axis, the

locus of the intersection of the joining lines is a hyperbola.

14. Parallels drawn from any system of points on a hyperbola to the

asymptotes divide the asymptotes homographically ; prove this, and thence

infer the following theorem :

If a;', x", x'"; y', y", y'", denote the distances of two triads of points on

two lines given in position from two fixed points 0, 0' on these lines, prove,

if x, y be the distances of two variable points on the same lines from 0, 0',

that x, y will divide the lines homographically if the determinant

y, i,

y', i,

y", i,

y'", it

= 0. (724)

15. Prove that the sum of the eccentric angles of four concyclic points on

a hyperbola is 2*.

16. Ifp, p', ir be the perpendiculars from the points (a + j8), (a j3),
and

the point of intersection of their tangents on any third tangent to the

hyperbola, prove
pp' = v2 cos2 . (725)

17. If a circle osculates the hyperbola xy = kz at the point <p }
the common

chord of the circle and the hyperbola is

x tan
</> + y cot $ + k (tan

z
<f> + cotV) = 0. (726)
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18. A, B are two fixed points ;
if from A a perpendicular AP\>6 drawn

to the polar of B with respect to an equilateral hyperhola, and from B a

perpendicular BQ to the polar of A
; then, if C be the centre,

CA :AP: : CB-.BQ.

19. An ellipse circumscribes a fixed triangle so that two of the vertices are

at the extremities of a pair of conjugate diameters ; prove that the locus of

its centre is a hyperbola.

20. The polar of any point on an asymptote is parallel to that asymptote.

21. The points where any tangent meets the asymptotes, and the points

where the corresponding normal meets the axes, are concyclic.

22. The two foci and the points of intersection of any tangent with the

asymptotes are concyclic.

23. The angles which the intercept, made by the asymptotes on any tan-

gent, subtends at the foci are constant.

24. If P, P1
be the extremities of two conjugate semidiameters of a hyper-

bola
;
and if S, S' be the interior foci of the branches of the hyperbola and

its conjugate, on which are the points P, P', prove that

SP- S'P' = BC-AC. (727)

25. If an ellipse and a confocal hyperbola intersect in any point P, the

intercepts on the asymptotes between the tangent at P to the hyperbola and

the centre are, respectively, equal to half the sum and half the difference of

the semiaxes of the ellipse.

26. A hyperbola, whose eccentricity is e, has a focus at the centre of the

circle x* + y
z = a2

; prove that the envelope of the tangents to the hyperbola

at the points where it meets the circle is the hyperbola.

27. If the chord of contact of two tangents to a parabola subtends a con-

stant angle at the vertex, show that the locus of their intersection is a

hyperbola.

28. If two hyperbolas have the same asymptotes, and if from any point

in one tangents be drawn to the other, the envelope of their chord of con-

tact is a hyperbola, having the same asymptotes.

29. If a variable circle touch each branch of a hyperbola it subtends a

constant angle at either focus, and makes intercepts of constant lengths on

the asymptotes.

30. The centre of mean position of the points of intersection of a circle

and an equilateral hyperbola bisects the distance between their centres.
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31. If PQ be the chord of an equilateral hyperhola which is normal at P,

prove
3CP* + CQ* = PQ2. (728)

32. The area of the triangle formed with the asymptotes by the normal

of the hyperbola z* - yz = a2
, at the point x'y

1

,
is

8
. (729)

33. The locus of the pole of any tangent to the circle whose dia-

x2 2

meter is the distance between the foci of - ^ =1, with respect to

x* y
2

-=
75-
= 1, is the ellipse

Q, tr

34. Two circles described through two points on the same branch of an

equilateral hyperbola, and through the extremities of any diameter, are

equal.

35. If c, <f>', q>", (/>'" be the parametric angles of four points on an equi-
lateral hyperbola, such that either is the orthocentre of the remaining three,

tan $ tan
<j>'

tan if," tan <f>'" + 1 = 0. (731)

Hence the product of the four abscissae is constant.

36. If the normal at the point # of the hyperbola xy = A2 meet it again
at the point <j>', prove

tan3 $ . tan <p' + 1 = 0. (732)

37. If four points on an equilateral hyperbola be concyclic, prove that

the parametric angle of any point and of the orthocentre of the remaining

points are supplemental.

38. If the osculating circle of an equilateral hyperbola, at the point

whose parametric angle is <p, meet it again at the point $', prove

tan3
<f>

. tan $>'
= 1. (733)

39. If the eccentric angle of the point (k tan
<J>,

k cot #) be 0, prove

cot
<f>
= cos 9 -f i sin f).

40. If two sides AS, AC of a fixed triangle be chords of two equal

circles, show that the locus of the second intersection of the circles is an

equilateral hyperbola.
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41 . If PI, P2 ,
P3 be three points of the equilateral hyperbola xy = 1 , then

(1) Area of triangle P,P2P3 = *(-*)(*>-*)(*^ (734)
*i 3:22:3

(2) The tangents at PI, P2 ,
P3 form a triangle QiQzQs whose area is

(an

(3) If the centroid of PiP2P3 be on an asymptote, QiQzQs = 4PiP2P3 .

(4) If the centroid of PiP2P3 be on the hyperbola, QiQtQz = - PiP2Pa.

(LucAS, Nouvelles Annales, 1876.)

42. If through the summits of PjP2P3 be drawn parallels to the opposite

sides meeting the hyperbola again in R\, JRs, 3, then

4('-*3a
)(g8

a -*ia
)(si

a-*)

(2) If the centroid of PiP2P3 be on an asymptote, P,iP253 = - PiP2P3 .

(3) If the centroid of PiP2P3 be on the curve,

(Ibid.}

43. If through any point S of the hyperbola be drawn parallels to the

sides of PiPjPs meeting the hyperbola again in Si, 82, S-t, then

(1) I &S2$ = -iPiP2 P3. (736)

(2) If the centroid of PIP2P3 be on the curve or on an asymptote so is

the centroid of Si StS3 .
(
Ibid.

)

44. Show that the polar circle of the triangle formed by three tangents

to an equilateral hyperbola touches the '

Nine-points Circle
'
of the triangle

formed by the points of contact, at the centre of the curve.

(R. A. EGBERTS.)

45. If two vertioes of a triangle circumscribed about an ellipse move

along confocal hyperbolae, prove that the locus of the centre of the inscribed

circle is a concentric ellipse. (Ibid.)

46. Two circles, whose centres A, B are points on the transverse axis of

a given ellipse, have each double contact with the ellipse, and intersect in
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a point P; if the difference of the angles ASP, SAP be given, the locus of

P is an equilateral hyperbola. (Ibid.)

47. The circle inscribed in the triangle formed by the asymptotes and

any tangent to the auxiliary circle of a hyperbola intersects the hyperbola
in the point where it touches the tangent to the auxiliary circle.

48. The circle on GG' as diameter (see fig., 195) passes through the

points where the tangent PT meets the asymptotes.

49. If a, a' be (he eccentric angles of two points P, Q on a hyperbola,

such that the normal at P passes through the pole of the normal at Q, prove

4a4 sin o sin a' 4- 4J4 cos a cos a' = e4 sin 2o sin 2a'.

50. If three points on an equilateral hyperbola be concyclic with the

centre, the angular points of the triangle formed by tangents at these points

are concyclic with the centre.

61. The summits of a self-conjugate triangle of an equilateral hyper-

bola are concyclic with the centre.

62. P, Q are points on an equilateral hyperbola, such that the osculating

circle at P passes through Q ; the locus of the pole of PQ is

(x* + y
2
)

2 = 4k*xy.

63. In the same case the envelope of PQ is

4 (4/v
2 -

xy)
3 = 27 2

(x
z + y

2
)

2
. (737)

x2 y 1 a2 bz

64. The hyperbola --= cuts orthogonally all the conies
2 a* + b*

passing through the extremities of the axes of the ellipse

^ + |r
= 1. (CROFTON.)

a b*

55. If from any point in the hyperbola xz - y
1 = a* + J2 a pair of tan-

x1 yz

gents be drawn to the hyperbola
-

^- = 1, prove that the four points
af o*

where they cut the axes are concyclic.

56. If through the point a on an ellipse a line be drawn bisecting the

angle formed by the joins of o to the point (a + )8), (a ft), prove, if a be

constant and ft variable, that the locus of its intersection with the join of

the points (a + ft), (a ft) is a hyperbola.



CHAPTER VIII.

MISCELLANEOUS INVESTIGATIONS.

SECTION I. FIGURES INVERSELY SIMILAR.

205. DEF. If upon two given lines AB, A!B' le constructed

pairs of similar triangles (ABC, A'B'C'}, (ABD, A'B'D'}, Sfc.,

such that the directions of rotation ABC and A'B'C', Sfc., are in-

verse. The two figures ABCD ____ A'B'C'D' . . . thus obtained

are said to be inversely similar.

206. DOUBLE POINT AND DOUBLE LINES.

There exists a point S which is its own homologue. This is called

the double point, or the centre of similitude. There exist also two

lines SX, SY which are their own homologues. They are called

the double lines.

If the triangles SAB, SA'B' are inversely similar, and if SX
bisect the angle ASA', it also bisects the angle BSB'. Hence

the line SX is constructed by dividing AA', BB' in parts pro-

portional to SA, SA', or to AB, A'B'. Let then A", B" be

points such that AA"/A"A' = BB"/B"B' = AB/A'B', S is on

the line A"B".

Similarly, SYthe bisector of the exterior angle ASA' passes

through points A'", B'", such that AA'"IA'"A' = BB'"IB"'B'

It can be proved directly that SX, SY, are parallel to the

bisectors of the angle AOA'. In fact, if the parallelograms

A"ABK, A"AB'L be constructed, we have BKjB'L = AA'jA'A
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= BB"IB"B'. Hence the points JT, ", L are collinear and we
have KB"IB"L = A"F/A"Z. Hence A"B" is the bisector of the

angle EA"L, and, therefore, parallel to the bisector ofA OA'.

207. Since AA' is divided inA" and A'" in the ratioAS : A'S,

the circle on A"A'" as diameter is the locus of points whose

distances from A, A' are in the ratio AS: A'S, that is in the

ratio of similitude. Similarly the circle on B"B'" is the locus

of points whose distances from
,
B' are in the ratio BS : B'S',

or of AS : A'S. Now, these circles intersect in S, let S' be their

second intersection, then S' is the double point of figures directly

similar described on AJB, A'B'.

Cor. 1. S' is the focus of the parabola which touches the

four lines AB, A'B', AA', BB'.
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For, since SX, ST, divide AA',BB' proportionally, SX, ST
are two rectangular tangents. Hence the sides of the triangles

A"A'"S, B"B'"S each touch the parabola, and therefore their

circumcircles pass through the focus,

Cor. 2. S is on the directrix.

Cor. 3. If the figures on AB, A'B' he denoted by Fl}
Fz ,

it

is easy to see that any point P of F1 on SX will have its homo-

logue of Fz on SX, and these points will be on the same sides of

8, and similar properties hold for points on ST.

Cor. 4. The lines OS, OS' are harmonic conjugates with

respect to the angle A OA'. For the distances of S, S' to AB,
A'B' are in the ratio AB : A'B'.

Cor. 5. If two figures inversely similar be constructed on

AA', BB', and S" be their double point, then SS" passes

through the orthocentres of the triangles OAA', OBB', O'AB,
O'A'B'.

Cor. 6. If the figure ABB'A' is cyclic S' is the projection

of its circumcentre on the diagonal 0',

EXERCISES.

1. If A, A' ; S, B'
; C, C' be three couples of homologous points, the

points which divide the lines AA', BB', CC' both internally and externally

in the ratio of similitude are situated on the double lines.

2. In two figures inversely similar, if the line joining corresponding

points pass through a given point the locus of each is an equilateral hyper-

bola.

3. In two figures inversely similar, if the line joining corresponding points

be parallel to a given line, the locus of each is a right line.

4. In two figures inversely similar, if the distance between correspond-

ing points be given, the locus of each is an ellipse.

5. If the segment A'B' slide along the line OA'B', prove that S describes

a right line.

6. If the points A'B' remain fixed on the line OA'B', and if OA'B' turn

round the point 0, prove that the point S describes a circle, and that each

double line passes through a fixed point.
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7. If ABC, A'B'C' be two triangles inversely similar they are orthologique,

that is, the perpendiculars let fall

from the summits of one on the sides

of the other are concurrent.

Let BM, CM be two of these lines,

then the angleBMC is the supplement

of the angle B'A'C', and therefore the

supplement of BA C. Hence the point

M is on the circumcircle of the tri-

angle ABC. The perpendicular from

A on B'C' meets the perpendicular

from C on A'B' in the circumference.

Hence it passes through M.

8. In the same manner parallels through A, B, C to B'C' , G'A', A'B'

are concurrent.

SECTION II. PENCILS INTEKSELY EQUAL.

208. Two pencils (abcd\ (a'b'c'd' . .
.)

are said to be inversely

tqual when they are superposable after one of them has been reversed

in the plane.

Two homologous rays are symmetrical with respect to the fixed

direction x, y ; these are called the double directions of the two

pencils.

In fact, transferring the pencil 8' parallel to itself until the

point S' coincides with 8, then let x, y be the bisectors internal

and external of the angle aa'
;
it is plain that b and b', c and c' . . .

will be symmetric with respect to x and with respect to y.
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Hence, when two pencils inversely equal are superposed with

respect to their vertices they form a pencil in involution, having
for double rays the bisectors of the angle between any two pairs

of homologous rays.

GENERATION OF THE EQUILATERAL HYPERBOLA.

209. If two pencils be inversely equal, and have different sum-

mits 8, 8'; the locus of the intersection of homologous rays is an

equilateral hyperbola whose centre is the middle point of SS', and

whose asymptotes are parallel to the double rays of the pencils.

If A be the intersection of two homologous rays it is evident

that the difference of the base angles of the triangle 88'A is

given, hence the locus of A is an equilateral hyperbola.

Again, if we construct the parallelogram 8AS'A', 8A' and

S'A' are still two homologous rays of the pencils, then the

point A' is on the hyperbola, but A, A' are symmetrical with

"Aspect to the middle point of 88'.

Lastly, if through 8, 8' we draw parallels to the double direc-

tion, we have two pairs of homologous rays which meet at

infinity. Hence, the parallels to these directions through the

centre are the asymptotes.

17
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Conversely, being given an equilateral hyperbola : if from

the extremities of any fixed diameter lines be drawn to any
variable point, we obtain two pencils inversely equal.

Cor. Any chord SA and its conjugate diameter are equally

inclined to an asymptote. In fact, if M be the middle point of

8A, OMis parallel to 8'A.

. 210. The locus of the centre of an equilateral hyperbola cir-

cumscribed to a triangle ABC is the nine-points circle of ABC.

A

For, if A', ',
C' be the middle points of the sides, and the

centre of the hyperbola ;
then the lines OA' and B' C', OB'

and C'A' are equally inclined to the asymptotes. Then the

angle B' OA' is either equal or supplemental to A' C'B'. Hence

is on the circumference A'B' C'.

Cor. Every equilateral hyperbola circumscribed to a triangle

ABC passes through the orthocentre H.

Let TFbe the middle of AH, the centre of the hyperbola,

the asymptotes are parallel to the bisectors of the angle OA'A^.

If P be the middle point of the arc A t 0, A'P is one of the

bisectors, and the bisector of the angle WA passes through P,

and is perpendicular to A'P. Then WO and WAj, are equally

inclined to A'P or WP, therefore AH is the chord conjugate to

the diameter OW. Hence H is on the hyperbola.
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EXERCISES.

1. If a right-angled triangle be inscribed in an equilateral hyperbola, the

perpendicular from the right angle on the hypotenuse is a tangent to the

hyperbola.

2. If A, B, C, D be any four points, the nine-points circles of the

triangles ABC, ABD, BCD, CDA pass through a common point, the centre

of the equilateral hyperbola through A, B, C, D.

3. An equilateral hyperbola circumscribed to a triangle ABC cuts the

circumcircle ABC in a fourth point D, which is diametrically opposite to

the orthocentre.

In fact, the centre of the hyperbola being on the nine-points circle,

and the orthocentre H being on the hyperbola, the point on the hyperbola

diametrically opposite to H is on the circumcircle, since H is the centre of

similitude of the two circles, and the ratio of similitude is \.

4. The diameter of the circle of curvature at any point of an equilateral

hyperbola is equal to the portion of the normal at the same point inter-

cepted by the hyperbola.

5. A circle cuts an equilateral hyperbola in four points, A, B, C, D; each

of these points is diametrically opposite on the hyperbola to the orthocentre

of the triangle of the remaining points (Ex. 3). Hence if ABCD be con-

cyclic points, the quadrilateral formed by the four orthocentres of the four

triangles is the symetrique of ABCD with respect to the centre of the

equilateral hyperbola ABCD.

6. Every circle which passes through the extremities of a diameter AB
of an equilateral hyperbola cuts the curve at the extremities of a diameter

CD of the circle. For the orthocentre of the triangle ABC has for syme-

trique the extremity of the diameter of the circle passing through C.

7. Every circle having for diameter a chord of an equilateral hyperbola

cuts it at the extremities of one of its diameters.

8. The asymptotes of an equilateral hyperbola circumscribed to a triangle

ABC are the Simpson's lines of points diametrically opposite on the cir-

cumcircle ABC with respect to the triangle ABC.
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SECTION III. TWIN POINTS (GERMAN ZWILLINGSPUNKTE).

211. Two points, P, P, are called Twins with respect to a

triangle ABC when the two pencils of rays P(ABC], P'(ABC)
are inversely equal.

Twin points were first considered by ARTZT,
"
Programm des

Gymnasiums zu Recklinghausen. Schuljahr, 1885, 1886.

212. To construct the point P' when P is given.

If circles be described around the triangle APC, PC, and if

their symetrique with respect to the sides AC, BC intersect in

P', P' is the point required.

Dem. Join AP', BP, CP' and produce BP to B,. Then,

from the construction we have, evidently, the angles AP'JBi,

B.P'C, CP'A, respectively, equal to APB, BPC, CPA, and

the pencils P(ABC], P'(ABC}. Hence, &c.
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Or, thus : Let Pa ,
Pb ,

Pc be the symetriques of P with respect

to the sides BC, CA, AB, then P' is the point common to the

circles BCPa ,
CAPb) ABPe. ,

<^<L P* P^P^ <Wy..
Or, again : The perpendiculars erected at the middle points

of the lines PA, PB, PC intersect two-by-two in three points,

Qa , Qb, Qc ;
let OJa , Q'b, Q'e be the symetriques of these with

respect to BC, CA, AB, then the perpendiculars from A, B, C
on the sides of the triangle Q'a Q'b Q'c intersect in P'.

213. If two points, V, V be inverse with respect to the circum-

circle of the triangle ABO, their isogonal conjugates are twin points

of the triangle.

A

Dem. By construction the angle

CAP' = V'AB, and ACP' = V'CB.
Hence

CAP'+A CP'=VAB+ VCB=ABC-AVC=A WC-A V C.

Similarly,

PCA +CAP=A~rC-ATrC, .: CAP+ACP'=PCA+CAP.
Hence AP'C= CPA. Therefore the circumcircle of the tri-

angle AP'C is the symetrique of the circumcircle of APC with

respect to A C. Similarly, the circumcircles of BP'C and BPG
are symetriques with respect to B C. Hence the proposition is

proved.

214. Twin points, P, P' are at the extremities of a diameter

of an equilateral hyperbola circumscribed to the triangle ABC.
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For the intersection of homologous rays of the inverse pencils

P(ABC . .
.),
P (ABC . . .) generate an equilateral hyperbola.

Cor. The locus of the middle point of twin points of a tri-

angle is the nine-points circle of the triangle.

For the middle point is the centre of an equilateral hyperbola

circumscribed about the triangle.

215. If V, V be the isogonal conjugates of the twin points PP'

(see fig., 213), and if thejoin of V, V intersect the circumcircle

in W, W, the Simpson's lines of W, W, with respect to the

triangle ABC are parallel to the double direction of the pencils

P(ABC . .
.), P'(ABC . . .). They are also the asymptotes of

the equilateral hyperbola ABCPP'.
Dem. The isogonal transformation of the diameter W is

the equilateral hyperbola ABCPP'. The asymptotic directions

are the isogonal conjugates of the points W, W, but the Simpson's

line of W is perpendicular to the isogonal line A W, and there-

fore has the direction of an asymptote, and the Simpson's lines

intersect on the nine-points circle. Hence they are the asymp-
totes.

Cor. The fourth point common to the hyperbola and circle

is the isogonal conjugate of the point at infinity on W .

216. If a, /?, y be the angles of a triangle whose sides are

parallel to the rays of the pencil P(ABC), the barycentric co-

ordinates of P are

l/(cot a 4 cot A}, l/(cot ft + cot B}, l/(cot y + cot C}.

Dem. LetAP meet the circumcircle of BPC in Q, then the

angles of the triangle QBC are a, ft, y respectively. Hence

the perpendiculars from Q on AB, AC are BQ sin (/? + ),

CQ sin (y + (7) ;
therefore if x, y, z be the normal co-ordinates

of P, we have

y CQ, sin (y + C) _ sin ft sin (y + C) _ sin C (cot y + cot (7)

z
=
BQsva.(ft + B)

=
sin y sin (ft + B}

=
sin B (cot ft + cot B}'

Hence if a, ft, y denote the barycentric co-ordinates of P,

a:/3:y: : l/(cot a + cot, A} : l/(cot ft + cotB) : l/(coty + cot C).

(738)
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For the point P' we have

:: l/(cot a
- cot A} : l/(cot /?

- cot } : l/(cot y
- cot (7).

(739)

A

Cor. The barycentric co-ordinates T, V are .

a2 (cotA cot a), J2 (cot # cot /3), c
2
(cot C7 cot y). (740)

EXERCISES.

1. To find the locus of P if the Brocard angle of the triangle BQOis
constant.

Let V be the Brocard angle of BQC. Then we have

cotA + cot o = A/o, cot B + cot ft = A/, cot C+ cot y = \/y.

Hence cot + cot F = A2 -
;

a

we have also 2 cot a cot = 2 (A/a
- cot -4) (*./ cot .B)

=
1,

or A.
2 S - \2 (co

ap
+ cot Sja) =

;

.-. A 2 - 2 (cot u4/ + cot ,5/a)
= 0,

ap

A 2 (l/aj3)
- cot w 2 (I/a) + 2 cot-4/a

= 0.
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Eliminating X, we have

2 (cot w + cot P)/o0
- cot w 22

(I/a) + 2 (I/a) . 2 (cot^/a) = 0),
or

2
(^ (cot ^ - cotw)

J

- 2
{-^

(cot G- cot F) 1 = 0. (741)

Hence the locus is the isotomic transformation of a conic.

Cor. The locus of V is a conic.

SECTION IY. TRIANGLES DEBITED FROM THE SAME TRIANGLE.

PEDAL TRIANGLES.

217. The projections of a point P on the sides of a triangle

ABC are the summits of a triangle A^B^C^ called, the pedal tri-

angle of P.

The sides of the pedal triangle of P are perpendicular to the

lines joining the summits of ABC to P' the isogonal conjugate

of P. (Sequel, page 165.)

The pedal triangles of the isogonal conjugates P, P' have the

same circumcircle, which is a principal circle of a conic inscribed

in the triangle ABC, and having P, P' as foci.

218. The barycentric co-ordinates ofP, with respect to its pedal

triangle, are equal to those of P' with respect to ABC.
In fact, if (x, y, z), (xlt y,, z^ he the normal co-ordinates of

P, P' with respect to AB C, we have

A^PB^ : B^PCl : ClPA l ::xysinC: yz swA:zz sin B
: : sin Cl(x^y^ : sin AKyfa} : sin Bf^Xi] ::zrc : x^a : yj),

219. The sides of the pedal triangle ofP are proportional to the
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products of the opposite sides of the quadrangle PAB C. In fact,

AP is the diameter of the circumcircle of the triangle PB^C^
Hence Sl Cl

= AP sin A. Therefore

B& : 1^1 = -4il?i : : a . AP : b . BP : c . CP.

Cor. The pedal triangles of each of the points A,B, C,P with

respect to the triangle formed by the three others are similar.

220. To find the area of the pedal triangle of P.

Let !, Jj, 0! denote the distances AP, BP, CP, R the radius

of the circle ABC, we have B1
C1 =a l sinA = aa^R, &c.

Hence, area

(742)

Cor. The areas of the pedal triangles of four points with

respect to the triangles formed by the three others are inversely

proportional to the squares of the radii of the circumcircles of

the triangles.
EXERCISES.

1. If A denote the area of the triangle ABC, E its circumradius, and IT the

power of P with respect to the circumcircle, the area of the pedal triangle of

Pis

7rA/(472
2
). (743)

2. The locus of points whose pedal triangles have a given area is a circle.

3. The pedal triangles of two points inverse with respect to the circum-

circle are inversely similar. (KiEHL.)

ANTIPEDAL TRIANGLES.

221. If through A, B, C we draw perpendiculars to PA,
PB, PCwQ form a triangle A'B' C' called the antipodal ofP with

respect to ABC.
EXERCISES.

1. The antipodal triangles of twin points are inversely similar.

2. If Q be the symetrique of P with respect to the circumcentre of the

triangle ABC, Pand Q are isogonal conjugates with respect to the antipodal

triangle of P.

3. There exists an infinite number of triangles circumscribed to ABC
similar to one another and having Pas their centre of similitude, the maximum
is the antipodal of P, and the minimum the summit of the pencil P(ABC).
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HARMONIC TRANSFORMATION OF A TRIANGLE.

222. If the lines PA, PS, PC meet the circle ABC again in

A', B', C', the triangle A'B'C' is called the harmonic transfor-

mation oiABC.

The polar of P with respect to the circle ABC divides the

lines AA', BB', CC1

harmonically. Hence the triangles ABC,
A'B' C' are in perspective. P is their centre, and p its polar

with respect to the circle their axis of perspective. Hence, in

starting from ABC^e can construct A'B'C1

,
and establish a

correspondence between the triangles by joining P to any
remarkable point Q of the figure ABC, and take Q' the homo-

logue of Q' such that QQ' is divided harmonically_by P and p.

223. The harmonic transformation A'B'C' of ABC with re-

spect to P is similar to the pedal ofP with respect to AB C, and

the homologue ofP in A'B'C' is the isogonal conjugate ofP in the

pedal A^B^Ci.

In fact, the angle PA& = PCA = AA'C', and PA&
= PBA = AA'B'. Hence B.A^ = B'A'C', &c.
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224. To calculate the sides and area of the harmonic transfor-

mation of the triangle AB C.

If a, /?, y be the angles of the pencil P(ABC~) we have

B'C' = 2R sin B'A'C' = 2 sin (A + a).

Similarly,

C'A'=<2Rsm(B + p), A'B' = 2sm(C + y). (744)
Again,

A'B'C1 = B'A' . A'C' sin B'A'C'

= 2R* sin (A + a) sin (B + /?) sin (
C + y). (745)

^'.5' C" sin (A + a) sin (B + )
sin

(
<7 + y)Hence -^-^- = i-^- \-*'. ^
-". (746)

sin A . sinB . sin C

225. The lines drawn through A', B', C', perpendicular to

AA\ BB', CO', respectively, form a triangle A"B"C" called the

polar reciprocal of ABC with respect to P. It is the antipedal

of A'B' C'. Its angles are equal to those of the pencil P (AB (7).

EXERCISES.

1. The area of the triangle A"B"C" polar reciprocal of ABC with respect

to Pis
2.R2 5 sin a sin (B + j8) sin ((7 + 7)/sin a sin sin 7. (747)

2. If 8 be the circumdiameter of A"B"C",

$ sin o sin sin 7 = 25 V 2 sin ^i . sin a . sin (2? + 0) sin (C
r+ 7) . (748)

3. If -we take the polar reciprocal A"B"C" of ABC with respect to the

symmedian point -BTof ABC, JTis the focus of an ellipse touching the sides

of A"B"G" at the middle points. (HADAMARD.)

4. The centroid G of ABC is the focus of an ellipse touching the sides of

the pedal triangle of G at their middle points and also the focus of an ellipse

touching the sides of the harmonic transformed of G at their middle points.

5-8. If through a fixed point we draw a variable line cutting the sides of

a given angle XOYin the points A, B, then (1) The locus of the circum-

centre of the triangle AOB is a hyperbola. (2) The locus of the orthocentre



300 Miscellaneous Investigations.

is a hyperbola. (3) The locus of the double point of two figures directly

similar described on OA, OB is a circle. (4) The locus of the symmedian

point of OAB is a conic. (NEUBERG.)

9. If two sides AB, ACof a triangle be given in position, and the third side

BC move in any manner, the orthocentre and circumcentre describe figures

inversely similar. (NEUBEKG.)

10. If two vertices B, Cots, triangle be fixed, prove that the two vertices

A, A' of the triangles BCA, BOA' which have a common symmedian point

,
describe when K moves two figures inversely similar.

(NEUBERG and SCHOUTE.)

11. If the sums of the squares of the sides of the pedal triangle of P be

given, the locus of P is a circle.

Let x, y, z be the normal co-ordinates of P, and S2 the sum of squares.

Then
cos C+yz cos A + zx cos B),

I x \ IsmA sin B \
or %S

Z = 2(* sin A) 2
(
- -

]
- 2xy - _ + - - cos C

)\smA/ Msm-B sin A J

= 2 (* sin A) 2
(
-?

)
- cot 2 (xy sin C), (749)

\ sin . / /

where <a is the Brocard angle of the triangle ABC.

12. The locus of points whose pedal triangles have a constant Brocard

angle F is a circle. (SCHOUTB.)

In fact the equation is

(!
2 + ii

3 + Ci
2
)/4A' = cot F,

/ x \
or 2 (x sin A] 2

(
-

-.
}
-cot 2(yz sin^)= 2(yz sin^4) cot F.

\ sin A /

Hence (cot u + cot F) 2 (yz sin A) = 2 (x sin A) 2 (*/sin A). (750)

13. In a given triangle ABC can be inscribed an infinity of triangles

similar to a given triangle A\B\C\. These have the same centre of simili-

tude S ; the minimum is the pedal of S. The envelopes of their sides are

parabolse having S as a common focus.

If -S' be the isogonal conjugate of S, the angles of the pencil S' (ABC) are

equal to those of the triangle A\B\C\ (see Twin points). Hence the bary-

centric co-ordinates of S are

a2 (cot^cot^i), 42 (cot.Bcoti), c2 (cot C cot d). (751)
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SECTION Y. TRIPOLAR CO-ORDINATES.

226. The tripolar co-ordinates ofP are itspowersPA Z
,
P z

,
PCZ

,

with respect to the three summits A, JB, C, of the triangle of refer
-

Tripolar co-ordinates are a limiting case of Tricylic co-ordi-

nates in which the position of a point is denoted by its powers

with respect to three given circles, namely when the circles re-

duce to points. Tricyclic co-ordinates were first employed by
the author. See " Bicircular Quartics," 1869.

227. Being given the mutual ratios X : p : v of the tripolar

co-ordinates of a point P to construct it.

Let the tripolar co-ordinates be X, Y, Z, then we have the

systems of determinants

X, T, *

X, /*, V

Hence the two points common to the coaxal circles Xj\ =
Yjp.

=

Z\v satisfy the conditions. Now, the points X = 0, Y= 0, and

the circle X/X -
Yjfi form a coaxal system of which X = 0, Y =

0,

that is, the points A and B are the limiting points.

Hence the circumcircle of the triangle ABC, since it passes

through A and B cuts the circle Xj\ -
Y//J.

=
orthogonally.

Similarly it cuts the circles Y/p,
- Z/v =

0, and Z\v - X/\ =

orthogonally. Therefore the two points common to the circles

X/X =
Y/fJi.

= Z/v, that is, the two points whose tripolar co-ordi-

nates are X, p, v are inverse points with respect to the circum-

circle of the triangle ABC.
A pair of points having the same tripolar co-ordinates \pv

are said by NEUBERG to be tripolarly associated. For shortness

we shall call them a tripolar pair.

Cor. 1 . If P, Q, be a tripolar pair, and F, V the points in

which the circumcircle ABC intersects PQ, then PQ are har-

monic conjugates to V, V .
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Cor. 2. The bisectors of the angles PAQ, PBQ, PCQ concur

in the points V, V .

228. The pedal triangles of a tripolar pair P, Q are inversely

similar (KIEHL). The double lines are the Simpson's lines of the

points F, V in which PQ intersects the circumcircle and the

double point is on the nine-point circle ofAB C.

Q

Dem. Let the tripolar co-ordinates of P, Q, be (Ajiiv), and

their pedal triangles A'B'C', A"B"C", then the sides of A'B'C'

are AP sin A, BP sin
,
CP sin C

;
hence they are pro-

portional to A* sin A, yu,i
sin B, v* sin C, and similarly the sides

of A"B" C" are proportional to A* sin A, pi sin B, v* sin G. Hence

A'B'C', A"B"C" are similar, and they have different aspects,

that is, they are inversely similar.

Again the ratio of similitude is AP/AQ = PF/PQ. Hence

the perpendiculars from VonBC, CA, AB, divide A'A", B'B",
C'C" in the ratio of similitude. Hence the Simpson's line of Fis

an axis of similitude. Similarly the Simpson's line F'is an axis of
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similitude, but these intersect on the nine-points circle. Hence

the double point is on the nine-points circle.

This point is the middle of the distance between the isogonal

conjugates of P and Q.

Special Case If X : p. : v : : I/a
2

: 1/i
2

: 1/c
2
. The quadrangles

ABCP, ABCQ, are such that the rectangles contained by the

pairs of opposite sides, are equal, viz., AE . CP = BC . AP
= CA . JSP. Hence it follows : 1. that if upon any side AB
be constructed a triangle ABR directly similar to GBP, the tri-

angle APR is equilateral. 2. The pedal triangle of any of the

four points A, B, C,P with respect to the triangle formed by the

remaining points is equilateral. 3. The points P, Q are

centres from which ABC can be inverted into an equilateral

triangle.

DBF. The points P, Q, have been called by Neuberg isodynatnic

points.

229. Relation between tripolar and normal co-ordinates.

Let x, y, % be the normal co-ordinates X, Y, Z the tripolar

co-ordinates of P, then we have

B'C' = AP sin C'PB',

or X sin?A = y
z + z* + 2yz cos A ,

T sinl# = z
2 + x* + 2zx cos B,

Z sin
2C = a? + y* + 2*y cos C. (752)
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Cor. Since IX + mY + nZ = is the general equation of a

circle cutting the circle ABC orthogonally, it follows that

'

+ 2xy cos C}+m (y
2 + z2 + 2yz cos A)

denotes a circle cutting ABC orthogonally. (753)

230. Lucas's Theorem. If A denotes the area of the triangle

ABC,
b cos C . Y+cco&B . Z-aX + abc cosA = 4A#, (1)

c cosA . Z + a cos C . X - b Y+ abc cosB = 4Ay, (2)

a cosB . X + b cos A . Y- cZ+ abc cos C = 4Az. (3) (754)

To prove (1), let fall the perpendicular AD; join PD, and

draw PE perpendicular to AD. Then, by Stewart's theorem

(Sequel, 5th edition, Prop, ix., p. 24).

CD.BP*+BD. CP3 = BC.PD2 + CD.BD2 +BD. CD2
,

Hence

I cos C . Y+ccosB. Z-aX=a. BD . DC-a (AP2 - PD2
}

= a.BD.DC-a (AE2 - ED2

}
= a . BD . DC-a(AD-<2x} AD

= 4A# + a (BD . DC-AD2

}
= 4Az - abc cos A.

Hence I cos C . Y+ c cos B . Z- aX + abc cos A = 4A#.

These equations enable us to transform formulae from trilinear

co-ordinates into tripolar co-ordinates. Thus, if S 12 denote the

distance between two points we have equation (184)

8 2 = {(*i- #z)
2 sin 2A + (y^

-
yz }

2 sin IB + (sx
- z2 )

2 sin 2 C}

I (2 sin A sin B sin C}.

Hence we have in tripolar co-ordinates

16A2 S12
2 = 2 2(X -Xz)

2 + 2
{
2bc ( Fi

- F8)(i -Zz}
cosA

}
. (755)
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231. In equation (274), if we suppose the second system of

circles to coincide with the first, and then each to become points,

we get for the four points A , S, C, P the following relations

where X = J.P*, &c. :

o, i,
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= o. (759)

=
1,

-r 16A.

(760)

(761)

(762)

5. The tripolar equation of a line through two given points is

X, T, Z, 1

X., z
,

Z ,
1

X", T", Z", I

I, 1, 1,

6 . If I + m + n = 0, prove that IX + mT+ nZ=0 is a diameter of the

circumcircle.

7. The equation of the circumcircle is

X, T, Z, 1

0, c2 , i2
,

1

c2
, 0, a\ 1

b\ a\ 0, 1

or a cosA . X + b cos B . Y+ c cos C . Z abc = 0.

The modulus of this equation is 22/2A.

8. The equation of the circle on BO as diameter is

*, F,

/2_ 1

= 0,

0, 1

1, 1, 1,

or aX - b cos C. T e cosS.Z- abc cos A = 0. (764)

The modulus of this equation is 4A. (765)

Compare 230.

9. The area of the triangle formed by three points is

X', T', Z', 1

X", T", Z", 1

X'", T", Z'", 1

1, 1, 1,

10. The radical axis of the three circles X/x = F//x = Z\v is

X, T, Z

X, n, v =0

1, 1, 1

Exercises 4-10 have been taken from Lucas's Memoir " Sur les Cooi-

ionnees Tripolaires," Mathesis, tome 9, page 129.

(766)

(767)



CHAPTER IX.

SPECIAL RELATIONS OF CONIC SECTIONS.

232. If 8 = 0, 8' = be the equations of two curves, then

S - kS' = represents a curve passing through every point of

intersection of the curves S and S'.

This proposition is a simple case of the evident principle that

the points of intersection of two curves S and S' must satisfy

the equations S = and S' = 0, and, therefore, must satisfy the

equation S - JcS' = 0. (Compare 30, Cor. 2.)

233. The following are special cases of this general

theorem :

1. If S = be any conic, and 8' = the product of two

lines, S - kzS' = denotes a conic section through the four

points, where S is intersected by the two lines denoted by 8'
;

for example, S - k2

a(3
= denotes a conic passing through the

points where S is intersected by the lines a = 0, ft
= 0. Hence,

if a, /3 are tangents, S kz
a(3

= denotes a conic having double

contact with S.

2. If the lines denoted by S' become indefinitely near, S'

may be denoted by Z2
,
where L = represents a line

;
then

S - k*Jj2 = denotes a conic, touching S in each point where

L intersects S ;
in other words, having double contact with S.

By giving different values to k, we get different conies, each

having double contact with 8, and having a common chord of

contact, namely L = 0. If the line L = intersect S in two real

points, S - k2Lz = will have real double contact with 8. If

the line L meet 8 in two imaginary points in other words, if
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it doe snot meet it in real points S - k2Lz = will have imaginary
double contact with 8. This form of equation may also be

written S* - JcL = 0, or S* + kL =
;
for either equation cleared of

radicals gives S - k*L2 = 0. In conic sections there are many
instances of imaginary double contact.

3. If S = denote the product of two lines, say MN;
then MN - l&I? = will denote a conic, touching the lines

M = 0, N =
0, and having the line L = as the chord of

contact.

4. By supposing one of the three lines Z, M, N to be at

infinity, we get three different cases. Thus : 1. Let L be at

infinity, then L becomes a constant
;
and if J/, N be real, the

equation MN= K*Z? will denote a hyperbola, of which M, JVare

the asymptotes. 2. Let L be at infinity, and let M, N denote

the two conjugate imaginary factors x + y \/ -
\, x -

y */ -\
t

the equation MN = $LZ
will represent a circle. From this it

follows that all circles pass through the same two imaginary points

on the line at infinity. For the circle a? + y
2 = rz

passes through
the points where the line at infinity meets the lines x + y */ 1

= 0, x - y v/ - 1=0, and the circle (x
-

a)
2 + (y

-
b)

z = r*

passes through the points where infinity meets the lines (x
-

a)

+ (y
-

*) V - 1 =
> (x

- fl)
-

(y
-

&) V - 1 =
0, which, since

parallel lines meet at infinity, will be the same points. 3. Let

one of the factors M, N be a constant, and let L = denote a

finite line, the equation will be of the form px = y
z
,
and the

curve denotes a parabola. Hence we have the important theorem

that every parabola touches the line at infinity.

5. If 8 = be the product of two lines, viz. ay =
0, and S'

the product of two others, namely /3S
=

0, then S fcS
f
be-

comes ay
-

k/38
= 0. Hence ay

-
kj38

= denotes a conic

passing through the four points a/?, a8, y3y, yS ;
in other words,

it denotes a circumconic of the quadrilateral formed by the

lines a, /8, y, S, taken in order.
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234. In the equation S -
Waft =

( 233, 1), if the

lines a = 0, ft
= 0, intersect on S, the

curve S - Fa/3 = touches 8 in the

point a/3, and will intersect it in the

points where the lines a =
0, (3

=

meet S again. For evidently the

curves have two consecutive points

common at the intersection of the lines

a, j3. This is called contact of the first

order.

This conic is represented also hy the equation 8 - kz

y8 = 0,

if y = he the tangent to 8 at the point a/3, and 8 = the

chord joining the points where a, ft meet S again.

Again, if one of the lines a =
0, ft

=
say a = touch S

at the intersection of a, ft, the second

point in which a meets 8 coincides

with the point a/3, and the curve

S -
Waft will have at the point a/3

three consecutive points common with

S, and will intersect it in the second

point, in which ft meets S. The con-

tact of S and 8 -
k*aft in this case is

called contact of the second order, and S - kz

aft is said to oscu-

late S.

EXERCISES.

yZ yl
denotes a conic osculating the ellipse + 1 = 1 at the point yftf. If

a2 o2

we make the coefficient of xy vanish, we get

(#

2 yz
,\ , fxaf yy'

a*+lf-
1

)-
k
(^

+ i-
and if we determine A so that the coefficient of x* = coefficient of y

2
, we get

the osculating circle at xy' . See supra (783).
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2. The circumconic/7 -f g 70 + haft is osculated at the point afi by the

conic
ya + hap _ up + ffa) ya + mfl

_

3. This result holds for tangential equations.

Thus, if 2 =ffiv 4 g vK + h\n,

then 3 - (g\ +//*) (to. + mrf = 0, (769)

represent a conic osculating 5 on the side opposite the summit v.

Lastly Let the lines a = 0, /3
= coincide with each other,

and with the tangent to S
;
then

the product aft becomes a2
,
and

the two conies will have four con-

secutive points common, which

is the highest order of contact

that two conies can have. This

is called contact of the third

order ; and the equations of two conies which have this species

of contact will be of the forms S - 0, S - k2a- = 0, where a is a

tangent to S. It is evident, from 233, 2, that the equations

of conies having double contact, are the same in form, and that

one changes into the other, when the chord of contact becomes

a tangent.

235. The following examples will illustrate the foregoing

principles : If 8 = ax* + 2hxy + by
z + 2gx = 0, S - kz

a(3
= a'x2

+ 2h'xy + I'y* + Ig'x = 0, the lines a = 0, /?
= will be the two

factors of the expression (ag
1-

a'g] x* + 2 (hg
1-

h'g} xy + (kg
1-

Vg^y*
= 0, got by eliminating the terms of the first degree. Now,
if one of these lines coincide with the tangent at the origin, we

must have # as a factor, which requires that the coefficient of y*

vanish. Hence, if the conies ax1 + 2hxy 4 ly* + 2gx = 0,

a'x* + 2h'xy + b'y
z + *2g'x

= osculate at the origin, lg'
= Vg.

Thus, if the circle xz + y
z + 2xy cos o> - 2rx sin w = osculate

axz + 2hxy + by* + 2gx = 0, we must have r = -
-, ? , and this
o sinw

is the value of the radius of curvature of S at the origin. If the

condition lg'
= Vg be fulfilled, the fourth point common to the
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two conies will be the point distinct from the origin, in which

the line (ag
1 -

a'g] x + 2 (hg
1 -

h'g} y = meets S. This will also

coincide with the tangent at the origin if, in addition to the

condition lg'
=

b'g, the coefficients of S, S' fulfil the condition

kg'
=

h'g, and the conies will have at the origin, contact of the

third order. Thus the parabola h2x2 + 2bhxy + b2y
2 + 2bgx =

has contact of the third order at the origin with 8.

Cor. The radius of curvature at the origin is the same

for the conic ax2 + 2hxy + by
2 + 2gx = as for the parabola

by
2 + 2gx = 0.

236. If in the equation S - WI? =
( 233, 2) S denote a

circle, we get the following theorem : The locus of a point, such

that the tangent from it to a fixed circle is in a constant ratio to its

distance from a fixed line, is a conic having double contact with the

circle ; the contact will be real when the line L cuts S
; imaginary

when it does not. In this case, if we suppose S to reduce to a

point, we get, evidently, the focus and directrix. Hence we

have the following definition : The focus of a conic is an infinitely

small circle, having imaginary double contact with the conic, the

directrix being the chord of contact.

DEF. A circle S having double contact with a conic is called

by GRAVES, a focal circle. (HEEMATHENA, vol. vi., 1888.)

237. If the focus be made the origin, the equation ( 173,

188) is of the form x2 + y
z
[= tfl?, or (x + y </~l] (x

-
y </^\)

= (kL}
2
, showing that the imaginary lines x + y y/- 1 = 0,

x - y \/- 1=0 are tangents to the curve. But x + y */
- 1

=
0, x - y -v/-~l =

>
are

(
233

> 4) the lines from the origin

to the cyclic points. If we denote these points by J and eT, we
see that the joins of either focus to / and J are tangents to

the curve. Hence, all confocal conies are inscribed in the same

imaginary quadrilateral, the six summits of which are the two

cyclic points, the two real foci, and two imaginary points on the

conjugate axis, called ANTLFOCI.
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238. If 2, 2' be the tangential equations of any two conies,

then 2 - &2' = is the tangential equation of any conic touching

the four common tangents of 2 and S'.

In particular, if for 2' we substitute

A2 + p? + v2 - 2p.v cosA-2v\ cos2?-2A./xcos C= Q = 0,

which denotes the cyclic points, then

2 - fa = (770)

is the tangential equation ( 237) of all conies confocal with 2.

239. CIRCLE OF CURVATURE. To construct the circle of curva-

ture at any point P (x'y'}on a central conic.

Let QR be the polar of P with respect to the orthoptic circle

of the conic, and let the normal at P meet QR in It
;
then Rr

the symetrique of R with respect to P is the centre of curva-

ture.

Dem. Let the conic be an ellipse referred to CP, and the

tangent at P as axes
;
then if a', V denote the semidiameter CP

and its semiconjugate the equation of the ellipse is xz
/a'

2 + y^jb'
2

+ 2x/a' = 0. Hence, 235, if p denote the radius of curva-

ture at P, we have p = Vz

ja' sin co
;

.-. a'
2 + pa' sin w = a'

2 + b'*

= a2 + b2 = CP . CQ, since QR is the polar of P with respect to

the orthoptic circle. Hence p sin <o = PQ ;
.-. p = PR.
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Cor. 1. If p be the perpendicular from the centre on the

tangent at P,

P = b'
2

/p for p
1 = a' sin o>. (771)

Cor. 2.p =
b"/ab. (772)

Observation. In the case of the parabola, the orthoptic circle

becomes a line (the directrix), and the polar of a point P with

respect to it is a parallel line twice as far from P. Hence the

intercept on the normal at P between the parabola and the

directrix is equal to half the radius of curvature at P. Com-

pare 167.

240. To construct the chord of osculation at P.

Let CN, NP be the co-ordinates of P
;
make CM = - 2 CN,

P

CL=- 2NP. Join LM, intersecting the ellipse in Q then PQ
is the chord of osculation at P.

Dem. If a, /?, y, 8 be the eccentric angles of four concyclic

points on an ellipse a + /3 + y-fS = Oor Im-jr. Hence, if a, {3, y
be the points where the circle osculating at P meet the ellipse

a =
ft
= y ;

therefore 8 = - 3a. Hence, if X, F be the co-ordinates

of the point where the chord of osculation meet the ellipse again,

X = 4x'3

/a
z -

3*', T = 4y'
3

/P -
3y'.

Hence X/x' + Tjy' + 2 = 0; (773)

and this is evidently the equation of LM, if we suppose XY to

be current co-ordinates. Hence the proposition is proved.
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Cor. \. Since the circle of curvature at P passes through P
and Q and has its centre in the normal at P, we have the fol-

lowing construction. Let the line which bisects PQ, perpendi-

cularly meet the normal in R
;
then the circle whose centre is

R and radius RP is the circle of curvature.

Cor. 2. The chord PQ, is the symetrique of the tangent at P
with respect to the ellipse.

Cor. 3. The equation of PQ is

x cos a/a
- y sin a/J = cos 2a. (774)

241. Through any point aft in the plane of a conic can be drawn

four chords of osculation, and the points of osculation on the conic

are coneydie. (NEUBEEG.)

Dem. Writing the equation (774) in the form

xx1

yy' x'
2

, ^_ ft

~a?

~
V

~
a2

+
$2

~
'

we get by substituting aft for xy and removing accents,

*2
y~ ax fty _

*-V-tf +
-b*

=ir
>

which represents a hyperbola through the points of osculation.

Now, if

S + \IT= is the general equation of a conic passing through

the points. If we put A. = c
2

/(a
2 + i2

), we get after an easy

reduction the circle

+ f
-

1^
= 0. (776)

Cor. 1. If the circle whose diameter is the join of the point

aft to the centre, be denoted by (7, and the polar of the point

a/3 by P, then (776) may be written

C + %(a*4-b
z)P=0. (777)

Hence, the radical axis of the circle through the points of
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osculation and the circle whose diameter is the join of the point

a/3 to the centre is the polar of the point aft with respect to the

ellipse.

Cor. 2. If the point aft coincide with P(x'y'} (see fig.

240), the equation (776) becomes

x* + f - xx' - yy' + (a
2 + b*}(xx'/a* + yy

1

'/b
2 -

1)
= 0. (778)

Hence, since this circle passes through x'y' it meets the conic

in three other points, and we have STEINEK'S THEOBEM.

Through any point P on a conic can be described three circles to

osculate the conic elsewhere, and the points of osculation and P are

concyclic.

Cor. 3. The circle (778) may be written

0. (779)

Hence, it passes through the points of intersection of the circle

x* + y
z az = 0, that is the circle on the transverse axis with

xx'ja*
-

yy'/b* -1=0, or the symetrique of the tangent at the

given point with respect to the transverse axis. I have called

(778) Steiner's Circle. The proof in 241 is due to Professor

Neuberg, and the form in (779) to F. PUESER, F.T.C.D.

Cor. 4. If the eccentric angle of Q be a, the eccentric angle

of P will be either -
a,

- a + 1 20 or - $ a + 240. Hence, if

Q be given, P has three positions whose mean centre coincides

with the centre of the ellipse.

242. If we compare the equation of Steiner's Circle (778)

with Joachimsthal's Circle

xz + f + xx' + yy'-u (xx'/a* + yy'/b* + 1 )
= 0, (549)

where u = a* + I2k/y'= i2 + az h/x',

we find they will be identical if we change the signs of x', y'

and make h = c2x'/2a
z
,
k =- c*y'/2b

2
. Hence, we have the fol-

lowing theorem : Iffrom any point P of an ellipse or hyperbola
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be described three circles osculating the curve, the point diametrically

opposite to P and the three points of osculation are the feet of four
concurrent normals to the curve.

Cor. 1 . If through the point x'y' on an ellipse be described

three osculating circles, the normals at the points of osculation

meet in the point

x = - c2*'/ 2
2
, y = &y'\ 2J

2
. (780)

Cor. 2. If Zii/D xzyz ,
x3 y^ be the points of osculation of

circles through x'y',

#1 + x-2.
+ x3

=
0, y l + yz + ys

=
0, (781)

V = 4*^*3, iy=4y1y,y3 . (782)

EXERCISES.

1. Prove the following construction for the centre of curvature at a

point Pof a conic. Let S he the focus, 6 the foot of the normal. Erec*

OK at right angles to PG, meeting SP in K, then KL, perpendicular to SP,

meets PG produced in the centre of curvature.

2. Find the equation of the circle of curvature at the point <f>
of #2/a

2

The co-ordinates of the centre are (540) e2 cos34>/a,
-

(^sin'^/i, and the

radius is (769) b'
3
]al>. Hence, the circle is

(x
- ^cosV/a)

2 + (y + c
2
sin>/4)

2 =
(i'

3
/S)

2
,

or
X* -t- j/

2 - 2cV 3
#/a

4 + 2cY3
y/6

4 + a'2 - 2i'2 = 0. (783)

3. Six osculating circles of a given conic can be described to cut a given circle

orthogonally.

For the condition that the circle (783) cuts the circle a;
2 + y

2 + llx + 2my + n

orthogonally is (254)

- 2/cV3
/a* + 2mey3

/i*
-

(a'
2 - 2J'2

)
- n = 0,

and this, by an easy reduction, and by omitting accents, gives the cubic

2fcV/a*
- 2mey/^ + 3*2 + 3f -

(2a
2 + 262 -

)
= 0, (784)

which cuts the conic in six points.

A particular case of this theorem is that Through any point in the plane

of a conic can be described six osculating circles of the conic. A theorem first

given in the Author's Bicircular Quartics, 1869.
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4. The centres of the six circles of Ex. 3 lie on a conic.

Expressing that the osculating circle whose centre is a and radius r cuts

x2 + y* + 2lx + 2my + n = orthogonally, we get

2la + 1m& + n + a2 + & - r2 = 0. (1)

But from Ex. 2 we have a = c2 cos3</0, = - c2 sin^jb,

a2 + 2 _ ^ =
(
ai _ 2J2) cos2 <p + (

2 - 2a2
)
sin2 0. "(2)

Hence,
a-a? + 2

)8
2 = c4 (1

- 3 sin2 < cos2
<J>).

Hence from (1) and (2) we obtain

(2la + 2m0 + n)
2 -

(a
2 4 P) (2la + 2mjB + )

- 3 (a
2o2 + i*jB) + 4+ 54 - 252 = 0,

(785)
which proves the theorem.

5. If in (785) we put I = -
x', m =

y', n = x'z + y'
z

,
we get MALET'S

THEOREM, that the centres of the six osculating circles which pass through a

given point x'y' lie on a conic.

6. The general equation of a conic osculating the ellipse at the point $,

and passing through the point of intersection of the ellipse, and osculating

circle is

(x* + y
2 - 2cV3

*/a
4 + 2cY3

//6* + a* - 2b'*)
= 0.

(786)

7. If \ = 2a2bzj(a
z + &2

)
in (786), we get a hyperbola whose asymptotes are

parallel to the equiconjugate diameters of the ellipse. The locus of the

centre of this hyperbola is

(787)

8. The locus of the centre of the conic (786) is the hyperbola

xy - b sin3 <p . x a cos3
<f>

. y = 0. (788)

9. The locus of the centre of xy b sin3 < . x a cos3
$ . y is

(te)* + (oy)S = (*)!.
(7JJ)

10. The chord of intersection of the ellipse and the hyperbola

xy -b sin3
<f>

. x - a cos3 $ . y = is xjxf + yjy' +1 = 0. (790)

11. Prove that the envelope of (790) is the curve (789), and that its point

of contact with its envelope is the symetrique of the centre ofxy-b sia?<f> . x

a cos3 <p . y = with respect to the centre of the ellipse.
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12. Prove that the focal chord of curvature at any point of a conic is equal

to the focal chord of the conic parallel to the tangent at the point.

13. The power of the point 6 on a;
2
/a

2 + y
2
/i

2 -1 = 0, with respect to the

circle osculating it, at the point <J>
is

4cz sin (e + 3(f>) sin3 (0
-

<p)
. (791)

For, substituting a cos 0, b sin 6 in equation (783), which may be written

Sc2
X* + y

2 - 2e2 cos3
<f>

. x\a + 2e2 sin3
<f>

. yjb
-
% (a* + i2) + cos 2<f>,

we easily get

c2-
{cos 29 + 3 cos 2<t>

- 4 cos3
< cos 9 + 4 sin3^ sin 6}2

= e2 {cos
2 e - cos2

<f>
+ 2 cos3

<f> (cos <f>

- cos 0)
- 2 sin3

<J> (sin $ - sin 0) }

= 4C2 sin J (0 + 3<J>) sin3 $ (e
-

<p).

14. If Si, S2 , 83 be the osculating circles at o, , y (Ex. 13), then the

equation of the conic may be written

= . (R. A. ROBERTS.) (792)

Make use of equation (791).

DOUBLE CONTACT.

243. We have seen, in 233, 2, that conies whose equa-
tions are of the forms S = 0, 8 - I? = have double contact,

and that L = is the chord of contact. Now, L may meet

8 in real coincident or imaginary points. Hence, there are

three species of double contact, viz. : (1) real and distinct points

of contact; (2) coincident points of contact, called four-pointio

contact or hyperosculation ; (3) where the points of contact are

imaginary.

244. To find the equation of a conic having double contact with

two given conies S, S'.

Let a, /? be a pair of common chords of S, S', such that

S - S' =
aft. Then k being any constant,

AV -2k (8+ S') + p = (793)
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represents a conic having double contact with 8 and S'. For it

may be written in either of the forms

(lea + ft}
2 - MS =

0, (ka
-

)
2 - 4kS' = 0.

Since k is of the second degree, through any point can be drawn

two conies having double contact with 8 and 8', for, substitut-

ing the co-ordinates of the point in (793), we have a quadratic

in k, and since 8, 8' have three pairs of common chords, there

are three such systems. If one of the conies S, S' be a line

pair, there are only two systems of touching conies, and if S, S'

both denote line pairs, there is only one system.

Cor. 1. If the conic (793) be denoted by C, we infer that

ka + ft, ka -
(3 are its chords of contact with S, S'

;
but these

form a harmonic pencil with a, ft. Hence, if two conies S, 8'

have each double contact with a third conic C, their chords of con-

tact form a harmonic pencil with a pair of their common chords.

Cor. 2. If S, S' each denote a line pair, they form a qua-

drilateral circumscribed to C
;
the lines a, ft will be its diagonals,

and the chords of contact the diagonals of any inscribed quadri-

lateral. Hence the diagonals of any quadrilateral circumscribed to

a conic, and of the corresponding^ inscribed one
} form a harmonic

pencil.

245. If three conies have each double contact with a fourth, their

six common chords form the sides of a quadrangle.

For, let the conies be S - Lf, S - Z2
2
,
S - Z3

2
;
then their

common chords are three line pairs, L* -L = 0, L* L* = 0,

Z3
2 - L? = 0, which form the four triads of concurrent lines

Ll = X/2 = -"3 5
~~ "! = -"Z = -^3 5

~
-"2 = -"1 = -^3 5

~
-^3 = -"1 = -"2-

(794)

Cor. If S - Zj
2

,
8 - Z2

2
,
8 - Z3

2
, each denote a line pair,

they form a circumhexagon to S. The chords of intersection

will be its diagonals, and we have BEIANCHON'S THEOKEM.

The diagonals connecting opposite summits of a circumhexagon

of a conic are concurrent.
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246. If three conies have each double contact with a fourth,

their twelve points of intersection lie six-by-six on four conies.

Dem. From the identities

8 + L,L2 + Z2Z3 + Z3Zi = S - L? + (Z t + Z2) (Z, + Z3)

s 8 - Z2
2 + (Z2 + Z3) (Z2 + ZO = S - Z3

2 + (Z3 + ZO (Z3 + Z2)

we infer that the conic 8 + ZjZ2 + Z2Z3 + Z3Zi passes through

the points of intersection of 8 - Zj
2
, 8 - Z2

2
,
with the chord

Z, + Z2 ;
also through the points common to 8 - I/2 ,

S - Z3 with

Z2 + Z3 ,
and the points where S - Z3

2
,
S - L? meet the chord

Z3 + Zi, and by obvious changes of sign we get three other

conies.

EXERCISES.

1. The general equation of a conic having douhle contatt with

S + L* + M* = is S+(Zcos0 + Jfsin0)
2 = 0. (795)

2. The equation of a conic touching the sides of a standard quadrilateral is

Fa2 - k (a
2 + 2 - 7

2
) + 2 = 0. (796)

For the discriminant is the product of the four factors, a j3 7.

3. If S, S' denote circles, and k any constant, S* S'l = */ k denotes a

conic having double contact with each. If S, S' denote point circles, this

gives the vector property of the foci.

4. If two conies have douhle contact, any arbitrary conic through the

points of contact will meet them again in points whose joining chords inter-

sect on the chord of contact.

The conies being written in the forms, S = 0, 8 L\z =
0, S L\Lz = 0,

the proposition is evident.

5. If an ellipse touch the asymptotes of a hyperbola, two of its common

chords with the hyperbola are parallel to the chord of contact, and equidis-

tant from it.

6. If a variable conic having double contact with a fixed conic pass

through two fixed points, the chord of contact passes through one or other

of two fixed points.



Special Relations of Conic Sections. 321

HYPEKOSCULATION.

247. If the line L in the equation 8 - Z 2 touch 8, then

S Lz = denotes a conic having four pointic contact with 8, or

as it may be said, hyperosculates it. FIEDLEB'S TBANSLATION OP

SALMON, 5th edition, page 441.

Through every point of a conic may be described a parabola

which hyperosculates it at the point.

For, since through any four points may be described two

parabola?, if the points be consecutive, the proposition is evident.

One of the parabola? will, in this case, be the square of the tan-

gent T\ the other will be 8 - kT2 = 0. The condition that this

denotes a parabola will determine the value of k. Thus, for the

conic (a, b, c, f} a, A) (x, y, 1
)
2 the tangent at x'y

'

is

(ax
1 + hy' + g} x + (hx

1 + by' +/) y + gx
1

+fy' + c = 0,

or, say Ix + my + n. Then, if 8 - kT2 = be a parabola, we get

k = (ab- h*)/(am? + bl* - 2hlm).

More generally, through every point on a conic may be described

a conic hyperosculating it, and touching a given line. Similarly,

through every point on a conic may be described an equilateral

hyperbola hyperosculating it.

EXERCISES.

1. Find the equations of the parabola, and of the equilateral hyperbola
which hyperosculates ax2 + 2hxy + by

2 + Igx = at the origin.

2. Through any two points in the plane of a conic can be described four

conies to hyperosculate it.

3. If a variable ellipse hyperosculate a fixed ellipse at the extremity of

the minor axis the locus of the foci is a circle whose^dianieter is equal to the

radius of curvature.

4. If Si, Sy, 83 have contact of the first order with each other two-by-two,
and if each hyperosculate S, the triangle formed by their points of contact

with each other is inscribed in the triangle formed by the points of hyper-
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osculation, and in perspective with it, and also in perspective with the

triangle formed by the tangents at the points of hyperosculation . (CROFTON.)

Let S = Pa? + n2 2 + V - 2Zwo)8 - 2mn0y - 2nlya =

inscribed in the triangle of reference be written in the three forms

(Jo 4 mp -
ny)*

- 4lma0 = 0, (wj8 + ny - /a)
2 - 4mn0y = 0,

(ny + la wijS)
1 -

4nlya,

then the conies Si, S2 ,
S3 will be 5 + 4JV, + 4m2 z

, +4V respec-

tively, and the proposition is evident.

Foci.

248. We have seen ( 236) that a focus of a conic is an

infinitely small circle having imaginary double contact with

it. Hence, if x'y
1 be a focus, the circle (x

-
x')

z + (y
-

y')
2 =

has double contact with it, but (x
-
x'f + (y

-
y')

2
is the product

of the isotropic lines (x
- x1

}
i (y

-
y'}

= 0. Therefore each

of these lines touches the conic. Hence, to find the foci of

(a, i, c, f, g, h) (x, y, 1
)
2 we are to find the condition that

(x + iy)
-
(x

1 + iy')
= touches it

;
in other words, to substitute

1, and -
(x

1 + iy
1

}
for A, /x.,

v in the tangential equation

(A, B, C, F, 6?, H) (X, /x,, v)
a = 0, we get, after omitting accents,

equating real and imaginary parts to zero, equations which,

after a slight reduction, become

(Cx- G}*-(Cy-F}z = (a-V), (797)

( Cx - 6) ( Cy - F} = AA. (798)

when A denotes the discriminant of (a, b, c,f, g, h} (x, y, I)
2

.

Since the conies (797), (798) intersect in four points we see

that every conic has four foci
; only two, however, are real :

these, as we know, are on the transverse axis. The imaginary

foci, called also antifoci, are on the conjugate axis.

GBAVES' THEOREM .

249. If two tangents be drawn to an ellipse from any point of a

confocal ellipse, the excess of the sum of the tangents over the

intercepted arc of the inner ellipse is constant.



Special Relations of Conic Sections. 323

Dem. Let PS, PS'
; QT, QT' be tangents to the inner

ellipse from two consecutive points PQ on the outer ellipse,

and let PS, Q V be perpendiculars on QT, PS'. Then, since

TR may be regarded as the continuation of ST, PUS may be

considered as an isosceles triangle. Hence PS= ST+ TR,

but QT=TR + RQ, .-. PS - QT= ST-RQ-

similarly, PS' - QT' = PV - S'T' = RQ - S'T'

(since the infinitesimal triangles PRQ, QVP are equal in every

respect). Hence, by addition,

(PS + PS'} -(QT+ QT') = ST-S'T' = SS' - TT',

.-. SP + PS' - SS' =TQ+ QT' - TT',

and the proposition is proved.

Cor. 1. If a string of given length, PSWS'P, held tight at

P, be partly in contact with a given ellipse, and enclosing it, the

locus of P is a confocal ellipse.

Cor. 2. If two confocal parabola have their axes in the same

direction, and iffrom any point of the outer tangents be drawn to

the inner, the excess of the sum of the tangents over the intercepted

arc is constant.

Cor. 3. Iffrom any point of the outer of two confocal hyper-

bolae tangents be drawn to the inner, the excess of the sum of the

tangents over the intersected arc is constant.

T2
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M'CTTLLAGH'S AND CHASLES' THEOEEM.

250. If two tangents PT, PT' be drawn to an ellipse from any

point P of a confocal hyperbola, the difference of the arcs TK, KT1

into which the hyperbola divides the arc vf the ellipse between the

points of contact is equal to the difference between the tangents PT,
PT1

.

The proof is an obvious modification of the demonstration of

Graves' Theorem.

Cor. 1 . In the same manner it follows that iffrom any point

P of an ellipse, tangents PT, PT' be drawn to the same branch of

a confocal hyperbola, the difference of the arcs TK, KT' into which

the ellipse divides the hyperbola between the points of contact is

equal to the difference between the tangents PT, PT'.

Cor. 2. If two parabola have a common focus and axes in oppo-

site direction, that is, if they cut orthogonally, and if from any

point P of either tangents be drawn to the other, then, as before, the

difference of the arcs is equal to the difference of the tangents.

251. FAGNANI'S THEOHEM. An elliptic quadrant may be divided

into parts whose difference is equal to the difference of the semi-

axes.

Draw tangents AD, BD at the extremities of the axes, and

through their intersection D describe a confocal hyperbola, cut-

ting the elliptic quadrant AS in K such that

AK- KB = AD-DB = a-b.

Cor. The co-ordinates of K are

(Y(a + *)}*, {*/( + )}. (799)

252. If a polygon circumscribe a conic, and if all the summits

but one move on confocal conies, the locus of that summit will be

a confocal conic.

It will be sufficient to prove this proposition in the case of a

triangle, as the proof for the triangle can be extended to the

polygon.
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Let ABC^e a triangle inscribed in a circle X
;
then (Sequel vi.,

sect, v., Prop. 12), if the envelopes of two sides of ABC be

coaxal circles, the envelope of the third side is a coaxal circle.

Now, let be one of the limiting points, and describe circles about

the triangles OAB, OB-C, OCA
;
let their centres be C',A',B',

then (Sequel vr., sect, v., Prop. 8, Cor. 4) the envelopes of these

circles are circles concentric with X, and the loci of their centres

C", A', B' are conies whose foci are and the centre of X
;
that

is, they are confocal conies. Also since the lines OA, OS, OC
are bisected perpendicularly by the sides of the triangle A'B' C',

that triangle is circumscribed to a conic whose foci are and

the centre of X. Hence the proposition is proved.

The foregoing demonstration, without reciprocation or infini-

tesimals, was first given by the author in a letter to the late

Rev. Professor Townsend, F.B.S., in the year 1858.

EXERCISES.

1. If a conic have double contact with two others which have the same

focus and directrix, the chords of contact pass through the focus and are

perpendicular to each other.

2. From any point P on an outer confocal tangents are drawn to an

inner
; prove that the conic through P, having the points of contact as foci,

either hyperosculates the outer confocal or cuts it orthogonally.
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3. In the case of hyperosculation, Ex. 2, prove that the latus rectum is

constant.

4. A conic is described touching a fixed conic at any point P and passing

through its foci, F, I"; prove that the pole of FI" with respect to this conic

will he on the normal at P, and will he the centre of curvature if the conies

osculate.

6. If a parahola have double contact with a given ellipse, and have its

axis parallel to a given line, the locus of its focus is a hyperbola, confocal

with the ellipse, and having one asymptote in the given direction.

6. If an ellipse have double contact with each of two confocals, the tan-

gents at the points of contact form a rectangle.

7. If an equilateral hyperbola hyperosculate a given parabola, the locus

of its centre is an equal parabola.

8. The centre of curvature at any point of a conic is the pole of the tan-

gent at the same point with respect to a confocal passing through it.

9. Two parabolas osculate a circle at the same point and meet it again in

the points P, P'
; prove that the angle between their axes is one-fourth of

that subtended by PP' at the centre of the circle.

SIMILAR CONICS.

253. DBF. Two figures FI, F2 are said to le homothetic when

radii vectors from any point of FI are proportional to the parallel

vectors from the homologous point ofF2 .

Two conies being given by their general equations it is re-

quired to find the conditions of being homothetic.

The equations of both conies being referred to their centres as

origin, they will be of the forms

ay? + 2hxy + If =
c, a'o? + Zh'xy + Vy

z = c
1

,

or in polar co-ordinates

p
2 =

cj(a cos2 + 2A sin cos + I sin20),

p'
2=

c'l(a' cos
2 + 2hf

sin cos + V sin20),

and in order that the ratio p : p' may be independent of 9 it is

evident that we must have

a/ a' = lib' = hlh'. (800)
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Cor. 1. If two conies have their highest terms the same

they are homothetic.

Cor. 2. If one of the common chords of two conies be at

infinity they are homothetic.

Cor. 3. Homothetic conies cannot intersect in more than two

finite points.

Cor. 4. If S = he the equation of a conic, S-kL=Q where

L is a line, denotes a homothetic conic.

254. If the conies be similar but not hompthetic it is plain

that if the axes of co-ordinates for one be turned round through

a certain angle, the new coefficients a, h, o will be proportional

to the old coefficients a', h', V . Suppose tnis done, and that

they become ka', M', kV
;
then from the property of invariants,

we have for rectangular axes

(a + 1}
= k (a! + i') f

ab - hz = t? (a'V
- A'

2
).

Hence, eliminating k the required condition is

(a + b)*l(ab
- A2

)
=

(of + bj/(a'b'
- A'

2
). (801)

Similarly, if the axes be oblique,

(a + b - 2h cos o)
2
/ (ab

- h2

}
=

(a' 4 V - 2h' cos
o>')

2

/ (a'b
1 - A'

2

).

(802)

Cor. 1 . Similar conies have equal eccentricities.

Cor. 2. All parabolse are similar.

Cor. 3. If two hyperbolae be similar, their asymptotes make

equal angles.

EXERCISES.

1 . If three conies have two points common their three common chords

which do not pass through either of these points are concurrent.

2. If three conies he homothetic their finite common chords are con-

current.

3. If three conies be homothetic their six centres of similitude are the

opposite vertices of a complete quadrilateral.
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4. If any line cut two concentric and homothetic conies the intercept

made on it between the conies are equal.

5. If a tangent at any point P of the inner of two concentric and

homothetic conies meet the outer in the points T, T', then any chord

of the inner through P is half sum of the parallel chords of the outer

through T, T,

6. If A, A' be the discriminants of the equations of two similar conies,

then A/A' is equal to the square of the ratio of similitude.

7. If two equal parabolas have different vertices but coincident axes they

hyperosculate at infinity.

8. If the equations of two conies differ only by a constant they have

double contact at infinity. Hence, concentric circles, and also concentric

and homothetic conies nave double contact at infinity.

PASCAL'S THEOEEM.

255. The intersections ofthreepairs ofopposite sides ofa hexagon

inscribed in a conic lie on a line. (The Pascal's line of the hexagon.}

Dem. Let the summits of the hexagon be denoted by 1, 2, 3,

4, 5, 6, and their lines of connexion by Z12 ,
Z1S , &c., then, since

the conic circumscribes the quadrilaterals 1234, 4561 its equa-

tion, 233, 5, may be written in the forms ZujZ^ - L^Lu = 0,

AsZ61
- ZsZ] 4

= 0. Hence the expressions Z12Z34
- Z45Z61 ,

and

LU (Zjjj
- ZM) are identical. Hence Zi2Z34

- Z45Zei
= denotes

two lines, but it also denotes a conic circumscribed to the qua-
drilateral whose summits are the points 1, 4

;
Z12 . LK ;

Z34 . Z61 ;

but Z14 is the diagonal through the summits 1, 4. Hence

23
- Zje must pass through the summits Z12 . Z

;
Z34 . Z61 .

Now, Z^ - ZM = denotes a line through the intersection of

Z23 and ZM, and we have shown that this passes through the

intersection of Zu with Z^, and of Z^ with Z61 . Hence the

proposition is proved.

Cor. 1. The Pascal's line is ZM - Lx = 0.

Cor. 2. Pascal's Theorem holds for each of the sixty hexagons



Special Relations of Conic Sections* 329

which can be formed by taking the points 123456 in different

orders of sequence.

Cor. 3. Since the conic circumscribes the quadrilateral 2356

its equation may be written in the form Z25Z36
- Z23Z56

= 0,

and its identity with Z12Z34 -Z/23ZU gives Z12Z34
- Z25Z36

= Z2s

(Zu - Z56).
Hence we infer that the intersections of opposite

sides of the hexagon 143652 lie on the line Z14
- Z56 =0, and by

comparing the identities L25 . Z36
- L^L^ = 0, and Z45Z61

- Z56Z14

= 0, we infer that the opposite sides of 163254 lie on Z14
- Z23

= 0, but the lines Z14
= Z23

= Z66 are concurrent. Hence we have

STEINEE'S THEOREM. The Pascal's lines of the three hexagons,

123456, 143652, 1 632 5 4,formed by interchanging the even numbers

2, 4, 6, are concurrent.

Cor. 4. If a hexagon 123456 be inscribed in a conic, the three

triangles, each formed by a pair of opposite sides, such as Z12Z45 ,

and the diagonal Z^ through the remaining points are in perspec-

tive and have a common centre of perspective. It is easy to see that

this is another statement of STEINEE'S Theorem.

M'CAY'S EXTENSION OF FETJEEBACH'S THEOBEM.

256. If a conic whose foci are collinear with the circumcentre be

inscribed in a triangle, the auxiliary circle of the conic touches the

nine-points circle of the triangle.

Let FF' be the foci, the circumcentre, A', B', C' the middle

points of the sides, and let the line FF' make angles AI, Si, GI

with the sides of AB C. Now, if 8 be any circle, the condition

that it touch the nine-points circle, that is, the circumcircle of

A'B'C', is by my extension of Ptolemy's Theorem,

=

where Sa
' denotes the power of the point A' with respect to 8

;

but if 8 be the auxiliary circle it is the pedal circle of the

points FF', and it is easy to see that Sa< = - OF. OF' cos2^, &c.
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Hence, by substitution the condition of contact becomes

a cos A l -f b cos 2?, + c cos Ci = 0, or the sum of the projections of

the sides of the triangle on the line FF' = zero, which is true.

Hence, &c.

If we suppose FF' to be the antifoci the proposition becomes

the following : If the minor axis of a conic inscribed in a

triangle pass through the circumcentre, the circle described on

the minor axis as diameter touches the nine-points circle of the

triangle.

This remarkable proposition is given by Mr. M'Cay, in a

Memoir on " Three Similar Figures," Transactions of the Royal
Irish Academy, vol. xxix., 1889.

MISCELLANEOUS EXERCISES ON CHAPTER IX.

1. The chord of curvature through the centre of an ellipse is equal to

2i'2/a'. (803)

2. The focal chord of curvature at any point of a conic is equal to the

focal chord of the conic parallel to the tangent at the point.

3. The focal chord of curvature at any point of a conic is double the har-

monic mean between the focal radii of the point.

4. If PP' be points on confocal ellipses having the same eccentric angle,

prove that the sum of the tangents drawn to the inner from the point P on

the outer is equal to the chord of the outer which touches the inner at P'.

5. If a circle and a conic osculate at P, and if the osculating tangent and

their common tangent intersect in Q, then a conic confocal to the given conic

passes through the points P and Q.

6. Find the lengths of the axes of the conic (a, b, e, f, g, h) (x, y, I)
2
.

Transferred to the centre as origin this becomes

ax2 + 2hxy + by
1 + A/tf = 0.

Now, if the auxiliary circle be x1 + y* r1 = it has double contact with

the conic. Hence

(ar
2 + A/ 67) x* + 2hrz xy + (fr

2 + A/C?) y
z = 0,
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which must be a perfect square. Hence the squares at the semiaxes are the

roots of the quadratic in rz

C3r* + (a + i) CAr* + A2 = 0. (804)

7. If (a, b, c,f, ff, h) (x, y, I)
2 = be an ellipse, its area is

irA/C*. (805)

8. The locus of points on a system of confocal conies, the osculating

circles of which pass through a focus is a circle of which the foci are inverse

points.

9. If a variable conic hyperosculate a fixed conic, and touch its directrix,

the chord of contact passes through the focus of the fixed conic.

10. If a system of conies have a common focus and directrix, the locus of

points whose osculating circles pass through the focus is a parabola.

(F. PURSER.)

11. If from a fixed point a tangent T be drawn to one of a system of

confocal conies, and a point P taken on it, such that OP . OTia constant,

the locus of Pis an equilateral hyperbola. (J. PURSER.)

12. If the base of a triangle and its vertical angle be given, the locus of

its symmedian point is an ellipse having double contact with the circum-

circle.

13. If the conic a = hy
1
* touch the circumcircle of the triangle of refe-

rence, the point of contact is on one of the symmedian lines of the triangle.

14. If a triangle be circumscribed to a conic, and two of its summits

move on a confocal conic, the third summit and the point of contact on the

opposite side lie on a confocal.

15. A circle touching an ellipse passes through its centre
; prove that the

locus of the foot of the perpendicular from the centre on the chord of inter-

section is a concentric and homothetic ellipse.

16. If a variable triangle of given species has its summits on three lines

given in position, show that its circumcircle has double contact with a given

conic.

17. Given five tangents to a conic, show how to find their points of con-

tact. [Make use of Brianchon's Theorem.]

18. Given five points on a conic, show how to construct it by points.

[Make use of Pascal's Theorem.]

19. Given five points on a conic, show how to draw the tangents at these

points.
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20. If the alternate sides of a Pascal's hexagon be produced to meet, their

points of intersection form the summita of a Brianchon's hexagon, and if

the alternate sides of a Brianchon's hexagon be produced to meet, their points

of intersection form the summits of a Pascal's hexagon.

21. If S = be the equation of a conic, find the equation of a homothetic

conic passing through three given points.

22. Pairs of tangents are drawn to a conic S parallel to pairs of conjugate

diameters of a conic S', prove that the locus of their points of intersection

is a conic homothetic with S'.

23. A triangle is described about a conic S, and inscribed in a confocal

conic S" ; prove that the osculating circles at the points of contact of the sides

are tangential to the fourth common tangent of S and one of the circles

touching the sides. (R. A. ROBERTS.)

[Make use of the theorems of the Exercises 5, 15. The method of proof

thus indicated is due to Mr. M'Cay.]



CHAPTER X.

THE GENERAL EQUATION TRILINEAR CO-ORDINATES.

257. ARONHOLD'S NOTATION. 1. In this notation, a point is

denoted by a single letter, and its trilinear co-ordinates by the

same letter, with suffixes. Thus the point x is the point whose

co-ordinates are xi} xz ,
x3 .

2. The trilinear equation of a right line, viz. aiX1 +a2 x2

+ 3#3
= 0, is denoted by a, - 0, the x being a suffix to a.

3. The general equation of the nth
degree is denoted by

ax
n =

;
that is, by (a\Xi + azzz + O|#3)", where after the invo-

lution #!
n
is replaced by the coefficient of xf in the given equa-

tion na^
1"1 a2 by the coefficient of #1

n~1 x2 ,
&c. Thus the conic

Oil #i
2 + azz #2

2 + #33 #3
2 + 2 12 Xi XZ + 2<?23 #2 #3 + 2 31 #3 X = IS

denoted by {a\x^ + a^x^ + a3x^:
or a? = 0. It is evident that

in this notation the symbols ai} a2 ,
a3 have no meaning of them-

selves for curves of the second or higher degree, until the

involution is performed. SALMON'S Algebra, 4th edition, p. 314
;

CLEBSCH, Theorie der Binaren AlgebraescJien Formen.

4. Any non-homogeneous equation in two co-ordinates may
be transformed into a homogeneous equation by the substitutions

xl
~

#3, xz -f x3 for the variables and the clearing of fractions.

258. Several well-known results assume a very simple form

when expressed in AEONHOLD'S notation. We shall merely
state them here, as they present no difficulty.

1. JOACHIMSTHAL'S equation (399), which gives the ratio

in which the join of the points y, z is divided by the conic

ax
z = 0, is

av
2 + 2kay . at + tfat

* = 0. (806)
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2. The equation of the polar of the point y, with respect to

a,
8 = 0, is

a,.a,
= 0. (807)

3. The condition that y and z may be conjugate points with

respect to #x
2 = 0, is

a
y
.az = 0. (808)

4. The equation of the pair of tangents, from the point y to

a,
2 = 0, is

a,?.a?-(at .ay}*=0. (809)

DISCRIMINANT.

259. To find the condition that a* = may represent a line

pair.

If #x
2 = represent a line pair, the polar of the points 1, 0, 0;

0, 1, ; 0, 0, 1, with respect to it will pass through the double

point, that is the lines Si, S2 ,
Sz ,

or

are concurrent, and eliminating x
lt
x2 ,

x3 we find the required

discriminant

#13

(810)

#31>

#22> #23

^32) #33

= 0.

DEF. The minors of this determinant are denoted by An , A^,

&c. Hence, A lt A^ &c., have no meaning by themselves until

the expressions in which they occur are expanded. This will

be plain from 260.

Cor. By solving any two of the equations $i=0, <S2 = 0, $3
= 0,

we get the co-ordinates of the double points, namely,

*/ : x2
'

: x,' : : Aa : Aa : A i3 (i
=

1, 2, 3). (811)
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TANGENTIAL EQUATIONS.

260. To find the pole of the line \x = with respect to ax
2 = 0.

Let 'y be the pole, then the polar of y, that is

ax .ay = 0, (807)

must be identical with A.,.
= 0. Hence, comparing coefficients,

011 2/1 + 0122/2 + #132/3
=

^1>

0212/1 + 0222/2 + 0232/3
= A2 , (!)

031 2/1 + 032 2/2 + 0332/3
= ^3-

From which, if A denote the discriminant, we get

Ay! = An\i + A IZ XZ + -4 J3A3
= A^.

Similarly, Ay2
= A^\Aj Ay3

= A Z\A . (812)

If the line \x or A^ + A2 #2 + A3#3 = touch ax
a = the point

of contact will be its pole, and will therefore be on the line and

substituting in \x = the values (812), we get the tangential

equation, viz., A = 0. (813)

Cor. 1 . The tangential equation or the equation in line co-

ordinates is obtained from that in point co-ordinates by writing

AI, Az ,
Az for

!, 0%, #3, and AI, A2 ,
A3 for a?1} a?2 ,

a?3 .

Cor. 2. Since y is the pole Ax = 0, if A^.
= touch az

z = we
have Ajj/j + A2 2/2 + A3y3

=
; hence, eliminating y1} yz , 2/s be-

tween this and the equations (1), we get the tangential equations

in determinant form, viz.,

011,
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Cor. 3. If the pole of the X, = be on the line
p.x

= we
have p-iyi + pvyz + i^yz

= 0, and eliminating we get

021,
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Observation. The bordered determinants (814), (815), (818)

are written by Clebsch

/X\ /A'

W U
respectively. See Cubic Transformations, page 4.

262. If ax
z =

0, bx
z = be two conies, it is required to find the

locus of the poles with respect to a* = 0, of tangents to b* = 0.

The polar of the point y, with respect to a* =
0, is

or putting I"! = a\\y\ + ^12^2 + i3 ya> &c -

And the condition that this should be tangential to bx
z = is

(BlYl + BzTz + 3F3)

2 = 0, or SY
Z - 0. (8 1 9)

263. In the general trilinear equation aaz + 2ha.fi + b(3? + 2f(3y

+ 2ffya + cy*
= 0, to explain the geometrical signification of the

vanishing of a coefficient.

1. The vanishing of the coefficients of the squares of the

variables has been fully explained in 113.

2. When the coefficients of the products vanish.

Suppose the coefficient h, for example, to vanish, then the

equation becomes aa? + bfi* + cy
z + 2f/3y + 2gya = 0. Now, this

will meet the line y = in the two points where the lines

aa? + b(3
z = meet y =

;
that is, in two points which are

harmonic conjugates to the points where the lines a = 0,
c

ft
= 0,

meet y. Hence we have the following theorem : If in the

general equation the coefficient of the product of any two variables

vanish, the third side of the triangle of reference is cut harmonically

by the other sides and the conic.

Cor. 1. If the coefficients of all the products vanish, each

side of the triangle of reference is cut harmonically by the conic.

In other words, the triangle of reference is autopolar with

respect to the conic.

z
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This may be shown otherwise. Let the conic be

Pa? + m>l?
-

n*y*
= 0,

then we have

(ny + la} (ny
-

la)
= w2

/3
2
.

Hence ny + la, ny
- la are tangents, and (3 is the chord of con-

tact, which proves the proposition.

Cor. 2. Any point on the conic Pa? + mz
(?

-
w'y

2 = will be

common to the lines denoted by the system of determinants

la, m/3, ny,

cos <, sin
<f>, 1,

each equated to zero, which may be called the point $ on the

conic.

Cor. 3. The equation of the join of the points $ +
if/', ^ -

\f/'

is

la, m(3, ny,

(820)

cos
(\j/

+
\f/'),

sin
(\j/ + \f/'}, 1,

= 0,

cos
(iff I//),

sin
(\l> t//),

1

or la cos
\f/
+ m(3 sin \p

-
ny cos

i//
= 0. (821)

Hence the equation of the tangent at the point ^ is

la cos $ + m/3 sin
iff

-
ny = 0. (822)

Cor. 4. The co-ordinates of the point of intersection of tan-

gents at
if/
+ i//, ^ ijs',

are

cos i

~T
sn cos i

(823)

Cor. 5. The equation of a conic referred to a focus and

directrix is a2 + y
2 = (y)

2
,
where y - denotes the directrix.

Hence it is a special case of

Pa1 + w2
/? -

2

y
2 = 0.
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EXERCISES.

1. Find the values of I, m, n, in order that Pa? + *
2 2 + w2

?
2 = may

represent a circle.

Ans. I2 = sin 2A, m* = sin 2.B, w2 = sin 2.C.

2. If the conic Pa? + w2
y3

2 + nz
y
z = passes through a fixed point, three

other points on it are determined. The points which form with the given

point, a standard quadrangle.

3. Find the condition that the join of the points $ + ty', ^ ^ should

touch the conic f'V + m'2 2 + n'2?
2 = 0.

I2 cos2 ti m? sin2 \1/ nz cos2 ii'

Ans. ~ + -s-* +-r~ = 0. 824)
I 2 m* n*

4. Find the co-ordinates of the pole of the line A* = 0, with respect to

the conic

\/kxt = 0.

From equation (812) it is seen that the co-ordinates of the pole are the

differentials of the tangential equation of the conic, with respect to Ai, Aj, \3,

respectively. But the tangential equation of the given conic is

= 0.

Hence the required co-ordinates are

Since these remain unaltered when \i\z\3 are interchanged with JiWs, we

see that the pole of A* with respect to

\ \X\ +

is also the pole of lx with respect to

V\\Xl + ^/\zXZ + V/A.3^3 = 0.

5. The centre of the conic

V As#3 =

is the pole of A* = with respect to the conic which touches the sides of the

triangle of reference at their middle points.

6. Find the locus of the pole of A* = with respect to the conic

l3X3,
=

z2
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being given that the conic fulfils another condition, such as to touch a given

line, say Lx = 0.

Solving the equations in Ex. 4, l\, ly, la are proportional to

Ai (A*

Now, if Lx touch the conic, we have

^1 ^2 ?3 -

LI L% Lt

Hence the required locus, omitting accents, is the right line

; -Ai*i)

L,
= 0. (825)

'
7. The triangles formed by three given points, and their polars with

respect to any conic, are in perspective.

Dem. Let y, z, w, be the angular points of the original triangle ; their

polars with respect to a*
2 = 0, are ax . ay ,

ax . at,
ax . av , respectively ;

and the equation of the join of y to the intersection of the polars of

t and w is

(a, . a,) (av . aw)
-

(a* . aw) (av a) = 0,

with two similar equations for the other lines of connexion
;
and these,

when added, vanish identically. Hence, &c.

8. It is required to determine when the general equation

acf + b& + ey* + 2Aa0 + 2/0? + 2^70 =

represents an ellipse, a parabola, or a hyperbola. If we eliminate y between

this and the equation

a sin A + /3 sin B + y sin C = 0,

which represents the line at infinity, and if the resulting equation in o, j8

be the product of two real factors, it will be a hyperbola ;
if the product of

two imaginary factors, it will be an ellipse ; and if a perfect square, it will

be a parabola. In this way we find it to be an ellipse, a parabola, or a

hyperbola, according as

A sin*4 + sin25+ C7sin2 C'+ 2-Fsin.B sinC^ 20sin CaiaA + ZHainA sin.B

is positive, zero, or negative.
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9. If the condition of Ex. 3 be fulfilled, what is the locus of the pole of

the join of the points ^ + ij/, \|/ ^' P

Denoting the co-ordinates of the pole by x, y, z, from equation (823),

we have

Ix = cos
i|/, my = sin

tf>,
nz = cos

t|/.

Hence, from (824), we get

l*x* m^y-
4 z2

-7T + -4- + - = - 826
'2 '2

This conic is the polar reciprocal of Z'
2a2 + w'2 2 +

'V = ^h respect

to ^o2 + 2 2 + M2
?
2 = 0. Hence the polar reciprocal of a'a2 + b'&* + c'y*

= 0,

with respect to ao? + i/8
2 + cy

z = 0, is

+ + ^.0. (827)
a o c

10. Find the condition that the line Aa + /xj8 + vy = will touch the

conic ^a2 + w 2 2 - V = -

Comparing Ao + n& + vy = with equation (822), and eliminating ^, we

get the required condition

\2 u? vz

i-+^-5- (
828 )P m2 2

Hence, if one tangent to the conic Pa2 + i
2
/}
2 = 2

7
2 be given, three

others are determined. The given tangent and the three others form a

standard quadrilateral.

11. If the chord in Ex. 3 passes through the point a', /3', y', the locus of

its pole is

Pa a + *n8j8'j8 -f nz
y'y = 0. (829)

12. The locus of the pole of any tangent to the conic ax*, with respect

to *i
2 4 z2

2 + x<? = 0, is

A2 = 0. (830)

13. Find the equation of the orthoptic circle of the conic

aa2 + l& + cy* = 0.

If ty + ty', ^- ^' be the parametric angles of the points of contact of two

rectangular tangents, then the condition of perpendicularity will give us

the required result, after eliminating ^, ty' by means of the co-ordinates in

equation (823), and putting a, b, c for Z
2
,
m2

,
- M2

; thus we get

a (b + c)cf + b (c +a)&
i + c(a + b)y

z +2,bccosA .&y+2cacoa.ya
+ tab cos C. o = 0. (831)
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14. The locus of the centre of a conic inscribed in the triangle of refe-

rence, and passing through the circumcentre, is

2 Vsin 1A (0 sin B + 7 sin C - a sin A) = 0. (832)

15. If the inscribed conic pass through the orthocentre, the locus is

2 Vtan A (ft sin B + y sin C - a sin A) = 0. (833)

264. To discuss the equation aft
= y

2
.

This is the special case of the last proposition, when the

coefficients of the products fty, ya vanish, and also the co-

efficients of a2
, ft

2
. The form of equation ( 233, 3) shows

that a, ft are tangents, and y their chord of contact. If in

the equation aft
= y

2 we put a = y tan
<f>, ft

= y cot <, the equa-
tion is satisfied. Hence the co-ordinates of any point on the

curve may be represented by tan fa cot fa 1 . This point will

be called the point fa

265. The equation of the join of two points <f>,
<' is the

determinant

a,
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Cor. 3. The tangents at <, fa intersect on the line

a -
ft tan < tan fa, got by eliminating y between their equa-

tions. Hence, if tan
<f>

. tan fa be constant, the tangents at

fa <j intersect on a fixed line passing through the point aft.

In like manner, it may be shown that if tan < + tan fa be con-

stant, the tangents meet on a fixed line passing through ya,

and if cot
<f> + cot fa be constant, on a fixed line through fty.

Cor. 4. The equation (834) may be written in the form

(a
- y tan <)

-
(y

-
ft tan <) tan.fa = ;

or, say L - M tan fa =
;

and since ( 45) the anhar-

monic ratio of the pencil of four lines a -
kft, a -

kift, a - k2ft,

a - &3ft is

(A KIJ (K% A3) (k KI) (JCi AS),

we infer that the anharmonic ratio of the pencil of lines from

any variable point of the conic to the four fixed points <i, < 2 >

<s, 04 is

(tan 0!
- tan < 2) (tan < 3

- tan < 4) -f (tan fa
- tan < 3) (tan fa

-tan fa),

or sin (fa
-

fa) sin (fa
-

fa) -f sin (fa
-

fa) sin (fa
-

fa),

(836)
and is therefore constant.

The theorem just proved was discovered by CHASLES, and

is the fundamental one in his Sections Coniques, Paris, 1865.

On account of its great importance we shall give another

proof. Let the quadrilateral formed by the four fixed points

be AB CD, and let be any variable point ; then, if the

equations of the sides AB, BC, CD, DA of the quadrilateral

be a, ft, y, 8 respectively, the equation of the conic ( 233, 5)
may be written ay

-
kftS = ;

but a being the perpendicular

from on AB, we have

OA. OB. sinA OB
a =

AB
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with similar values for ft, y, 8
;
and these substituted in the

equation ay
-

k/38
= give

sinA OB. sin COD _ AB . CD
sinBOC.sinAOD

~ '

BC.AD'

The right-hand side of this equation is constant, and the left-

hand side is the anharmonic ratio of the pencil (O.ABCD}.
Hence the proposition is proved. (See SALMON'S Conies,

p. 240).

Cor. 5. The tangent at < intersects the tangent at <i on

the line a cot
<J>
-

ft tan fa = 0. Hence, as in Cor. 4, we infer

that the anharmonic ratio of the four points, where tangents

at four fixed points </> 1( $2 ,
< 3 ,

< 4 meet the tangent at any
variable point <J>,

is

sin (fa
- < 2)

sin
(< 3

- < 4)
-=- sin (fa

-
<&,) sin

(<f>2
-

<fo),

and is therefore independent of
<f>.

Cor. 6. If the line Ao, + /z/3 + vy touch the conic at the

point <, we must have X, /*, v proportional to cot <, tan <,
- 2.

Hence

4\fji
= v\ (837)

which is the tangential equation of the conic.

EXERCISES.

1 . The co-ordinates of the point of intersection of tangents at
<f>, <f>'

are

proportional to tan $ tan
<(>', 1, J (tan <f> + tan

<)>').

2. The length of the perpendicular from the intersection of tangents at

<', <(>" on the tangent at < is, putting t for tan
<j>, &c.,

(t- t')(t-t")+fW, (838)
where f(t) stands for

3 + 2 (2 -008^)^ + 4cos-B.* + 1).

3. If a)8 = 2
7
2 he the equation of a conic, the circle of curvature at the

point Py is

/B
2 + y

2 + 2v cos A = ft . (o sin -B)/*
2

. (CROFTON.)



The General Equation Trilinear Co-ordinates. 345

4. If <p, <f>'
be two points on a conic, such that the ratio of tan <p : tan

<j>'

is constant, the envelope of their join is a conic, having double contact

with the given conic.

5. If the points <p, <f>' vary but so as that the ratio of tan
<f>

: tan
<f>'

be

given, they divide the conic homographically (see Cor. 4).

Hence, if two conies have double contact, any variable tangent to one

divides the other homographically. (TOWNSEND.)

6. If two vertices of a circumscribed triangle move on fixed lines, the

locus of the third vertex is a conic having double contact with the given

conic.

For let the points of contact be <p, $', $" ;
and the fixed lines a - /JL&

= 0,

a - fi'&
= 0. Then

( 265, Cor. 3), tan
<f>

. tan <p'
= n, tan

<j>
. tan <j>"

= p.
Hence the tangents at <p', <f>" are

o tan
<j> + n~0 cot

<f>
=

2/j.y,

o tan < + p'
2
ft cot < =

2/j.'y

and eliminating <j>
we get

oj8 (/* + At')
2 = 4/*MV- (839)

7. Find the envelope of the base of a triangle inscribed in a conic and

whose two sides pass through fixed points.

8. If /3i2 denote the perpendicular from the intersection of tangents at

<>', <(>" on the tangent $, and ITU the perpendicular on any other tan-

gent ; then

= = (840)

9. If a polygon of any number of sides be circumscribed to a conic,

and if
<{>', <f>", &c., be the points of contact, and

<j> any variable point, then,

with the notation of Ex. 8, we have

-'*" -t"'\
'- + &c. = 0. (841)

1TJ2 TT23

10. Since fa (? + t") = 2yu, and fa (ft")
= aiz (Ex. 1), it follows that

Hence, from (841), we get

4 h h &c. + = 0. (842)
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THEOET OF ENVELOPES.

266. We have seen (Chapter II. Section in.) that if the

coefficients in the equation of a line be connected by a rela-

tion of the first degree, the line passes through a given point

in fact, the relation between the coefficients is the equation of

the point ( 72) ;
and in this Chapter we have shown that, if

the coefficients be connected by a relation of the second degree,

the line will, in all its positions, be a tangent to a curve of the

second degree. From these examples we are led to the follow-

ing definition : When a right line or a curve moves according to

any law, the curve which it touches in all its positions is called its

envelope. The following examples afford further illustrations

of this theory, one of the most interesting in Analytical

Geometry.

EXERCISES.

1. Let \x+ ft.y + 1 = be the line, and (a, b, e, f, g, h}(\, ft, I)
2 the rela-

tion among the coefficients ; it is required to find the envelope of the line.

It appears at once that the required envelope is such that two tangents can

be drawn to it from any arbitrary point. For, let x'y' be the point ;

substitute these co-ordinates in \x + py + 1, and eliminate p. between the

result and the equation (a, b, e, /, y, A) (\, p, I)
2

,
and we get a quadratic

in A., corresponding to each root of which can be drawn a tangent to the

required envelope. Now, if the quadratic have equal roots, the tangents

will coincide, and their point of ultimate intersection will be a point on

the curve. Hence, forming the discriminant of the quadratic in A, and

removing the accents from x'y', we get the required envelope, viz.

(A,B,C,F,G,X)(*,y,ir=Q, (843)

where A, B, C, &c., have the usual meanings.

2. Find the envelope of \&x + py + a = 0. This is the quadratic that

would result if we were solving by the foregoing] method the problem of

finding the envelope of the line \x + py -f a = ; \, /* being connected by
the relation A. = fi?. Hence, forming the discriminant with respect to n
of the equation y?x + py + a = 0, we get the parabola y

i= iax.

Similarly, we may solve the more general problem to find the envelope
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of ju
2P + (J.Q + R = 0, when P, Q, R denote curves of any degree, viz.

we get

Q? = 4Pff. (844)

3. If p, p' be the distances of two fixed points/./' from a variable line ;

then, if Apz + 2Bpp' + Cp'
z = D the envelope of the line is a conic of which

the line ff is an axis of symmetry.

1. If z - 4 AC > the equation reduces to the form

(mp + np') (m\p + nip')
= D.

Let .F, F' be the points which divide the distance ff in the ratios - /,
ni/mi, and let ff, g' be the distances of FF' to the moveable line. Then

the equation becomes gg' = E, and the line envelopes an ellipse or hyperbola

having F, F' as foci, according as E is positive or negative. If m\ = n\

F' is at infinity, and the envelope is a parabola.

2. If z - 4AO= the equation becomes (mp + np')
2 = Z>, which corre-

sponds to a circle.

3. If .B2 - 4:AC < 0, we can write (mp + np') (m\p + n\p')
= D where the

ratios mfn, m\\n\ are imaginary. The imaginary points F, F', which divide

ff in the ratios n\m n\\m\ are situated on the minor axis. They are the

antifoci of the conic. In this case we can also write the equation in the

form

(up + vp')
z + (n'p + v'p'Y = D.

4. Find the envelope of the line ax cos
<f>
+ by sin <p

= ab.

5. Find the envelope of a line if the sum of the squares of perpendiculars

let fall on it from any number of fixed points be constant.

Ana. A parabola.

6. Find the envelope of

\H being = c. Am. Ixy = c.

1. Find the envelope of a line which makes on the axes of co-ordinate

intercepts whose sum is constant.

8. If two conjugate diameters of an ellipse be given in position, and the

sum of the squares of its axes given in magnitude, prove that it is inscribed

in a given quadrilateral.

9. Find the envelope of a system of confocal conies. Let

X1
y
z

az + \
+

i2 4 A.

=
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be one of the conies. Clearing of fractions, and considering the result as

a quadratic in A, we find, by forming the discriminant, the product of four

imaginary lines, viz.

c x y v/~ = 0, where c2 = a2 - 4'. (845)

10. The envelope of the polar of a given point, with respect to a system
of confocal conies, is a parabola whose directrix is the join of the given point

to the centre of the confocals.

11. If A, S, C, A', ff, C' be two triads of fixed points on two given lines

H, ft.'
two variable points, one on each line, find the envelope of the join

of ft, ft,', if the anharmonic ratios (ASCfj.), (A'B'C'n'} be equal.

12. The summits of a triangle move along three fixed lines, and two of the

sides pass through two fixed points ;
find the envelope of the third side.

13. If two of the sides of an inscribed triangle of the conic a2 + j8
2 =

-y
2

touch the conic aa2 + 4/3
2 = cy

y
, the envelope of the third side is

(en 4 ab - be)"
1 a8 + (ab + be - ca)

2 & =
(be + ea - ab)

2
y
2
. (846)

14. If the point x'y' be the orthocentre of a triangle inscribed in the

ellipse x
2
ja

2+ y
2
/*

2 -1 =
0, prove that the envelope of its sides is the conic

(a + i2
)
2

{ (a
2 - *'2

)
x* + (b

2 -
y'

2
) y

2 -
Zx'y'xy]

+ 2 (a
2 + 4s

) { (aV2 + 4V2 - a4
)
xx' + (aV2 + b2y'

2 - 44
) yy' }

- (aV2 + 4V2 -
a*) (aV2 + 42y'

2 -
4*)

= 0. (847)

15. If the line \x + ft.y + 1 = cut the conic

ax9 + 2hxy + Ay
2 + 2gx + 2fy + c <=

in points which subtend a right angle at the origin, prove

c (\
2 + ^u

2
)
- 2y\ - 2fn + (a + 4)

= 0. (848)

16. If tangents be drawn to the ellipse a;
2
/

2 + y
2
/4

2 1= at the extre-

mities of a variable diameter AA', and if a circle touching these tangents

touch the ellipse at a point P, prove that the envelope of the chords AP, A'P

is one or other of the conies

- 0,

+ 1 (a
-

4)
= 0. (849)
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Cor. 2. From (850) we get

ex cy

a - x a - x (851)

B

268. If any line CD cut the lase line and the infinite line in

the points C, D respectively',
its projection will le a line through

C parallel to 02).

Let the equation of CD be

Ix + my + n

and since 01= a, the equation of //'

is x - a = 0. Hence the equation of

ODb
n (x

-
a} + a (Ix + my + w) = 0,

or (la + )
x + may = 0.

Again, substituting in Ix + my + n the values in (850), we get,

after omitting accents and clearing of fractions,

(la + n) x + may + nc = 0,

which is the equation of the projection of CD. Now, since

this differs from the equation of OD only by a constant, it is

parallel to it
;
and since it may be written in the form

n (x
- a + (?)

+ a (Ix + my + n) = 0,

it passes through the intersection of the lines

x - a + c = and Ix + my + n =
;

that is, through the point C. Hence the proposition is proved.

Cor. 1. Any two lines intersecting each other on II' are

projected into parallel lines.

For, if two lines pass through the point D, the projection of

each will be parallel to OD.

Cor. 2. A line passing through the origin is unaltered by

projection.
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Cor. 3. If four lines form a pencil, their projections form

a pencil of the same anharmonic ratio.

For, if P be the vertex of the pencil, and if its four rays

meet the line //' in the points A, B, C, D, their projections

will be parallel to OA, OS, OC, OD. Hence the proposition

is proved.

On account of the invariance of the anharmonic ratio by projec-

tion, those properties which depend on anharmonic ratios are called

PEOJECTIVE properties.

Cor. 4. Parallel lines are projected into concurrent lines.

For the projection of Ix + my + n = is a (Ix + my} + n (c + #)= ;

if n be variable (Ix + my + n) = denotes a system of parallel

lines, and its projection a (Ix + my} + n (c + x) = a concurrent

system.

269. A curve of the second degree is projected into another curve

of the second degree.

For, making the substitutions (850) in an equation of any

degree, and clearing of fractions, we get an equation of the same

degree.

Cor. 1. The projection of a tangent to a conic is a tangent

to its projection.

Cor. 2. The relations of a pole and polar are unaltered by

projection.

Cor. 3. A system of concentric circles is projected into a system

of conies having double contact with each other.

For, let xz + y* = r2 be one of the circles : by varying r we get

a concentric system ;
and making the

substitutions^(850), we get

a (x* + y
z
)
= r*(c + a)

2
, which, when r varies, denotes a [system

of conies having double contact with each other.

270. Any straight line can oe projected to infinity, and at the

same time any two angles into given angles.
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Let //' be the line to be projected to infinity ; UPS, TQ V
the angles to be projected into given angles ;

say, for example, into right angles. Let //

meet the legs of the angles in the pairs of points

R, S; T, F. Upon US, TV describe semicir-

cles, intersecting in 0. Then will be the

required centre of projection, and we can take

any line parallel to //' for the base line BE'.

If the circles do not intersect, the point

will be imaginary, in which case imaginary
lines in one figure will be projected into real

lines in the other. Thus confocal conies,

being inscribed in an imaginary quadrilateral,

will be projected into conies inscribed in a real

quadrilateral.

The substitutions for this case are, for x, y, respectively,

ax ay\/- 1

c + x' c + x

In this manner we get for the four imaginary lines (845), the

four real lines c (c + x) ax ay =
0, which are the four sides

of the quadrilateral circumscribed to the projection of confocals.

271. A system of coaxal circles is projected into a system of
conies passing through four points.

Dem. Let a? + y
z + 2kx - d*- = be a circle, which, by giving

k different values, will represent a coaxal system. Then, making
the substitutions (850), we get, after clearing of fractions,

flV + aY -d2
(c + *) + Max (c + x)

=
0,

or, say, S + 2kLM= 0.

Hence the proposition is proved.

This may be shown otherwise, thus : a coaxal system of circles

have common the two cyclic points, and the two points where

they meet the radical axis, and the projections of these points
will be common to the projections of the circles.
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272. Any conic S can be projected into a circle having for its

centre the projection of any point P in the plane of the conic.

Dem. Let //' be the polar of P with respect to S
;
then

Q

R

R

take this for the infinite line
( 267), and let

Q, R; Q', R' be pairs of conjugate points

upon it with respect to S
; upon QR, @R'

describe semicircles, intersecting in 0. Now

taking for the centre of projection, and

any line parallel to II' for the base line

( 267), the lines PQ, Pit will be projected

into lines parallel to OQ, OR-, that is, into

rectangular lines. Similarly, PQf, PR' will

be projected into another pair of rectan-

gular lines. Hence the projection of S will

be a conic, having two pairs of rectangular

conjugate lines intersecting in the projec-

tion of P. In other words, it will be a circle, having the projec-
tion of P for centre.

273. The pencil formed ly the two legs of a given angle, and the

imaginary lines through its vertex to the cyclic points has a given

anharmonic ratio.

Dem. Let the given angle be that formed by the axes of

co-ordinates, namely, w. Then the equation of a point circle at

the origin is x* + y*
- 2xy cos CD =

;
and the factors of this, viz.

x _ e?*<-i y = 0> x _ e
-w vzi

y = Qj are the jj^ from the origin to

the cyclic points. The anharmonic ratio of the pencil, formed

by these lines and the axes, is 2o>v ~1

,
and is therefore given.

Hence the proposition is proved.

Cor. If the axes be rectangular the pencil formed by them,
and the lines to the cyclic points, is a harmonic pencil. For,

putting

r/2 for 02,0V-! __

2 A
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EXERCISES.

1. Any quadrilateral can be projected into a square. For the third diagonal

( 270) may be projected to infinity, and the remaining diagonals and a pair

of adjacent sides into pairs of rectangular lines.

2. The diagonal triangle of a quadrilateral is self-conjugate with respect

to any inconic of the quadrilateral. For projecting the quadrilateral into a

square, the intersection of the diagonals of the square will evidently be the

centre of the inconic of the square, and will be the pole of the line at infinity

with respect to that conic. Hence any diagonal of the quadrilateral is the

polar of the intersection of the other two.

3. If four chords of a conic be tangents to an inscribed conic (having

double contact), the anharmonic ratio of the points of contact is equal to

that of one set of extremities of the chords of the outer conic. For the

conies may be projected into concentric circles, and the proposition is

evident.

4. Any line passing through a given point in the plane of a conic is cut

harmonically by the conic and the polar of the point. For the conic can

be projected into a circle and the point into its centre ( 272).

5. Any chord of a conic touching an inscribed conic is cut harmonically

at the point of contact, and at the point where it meets the chord of contact

of the two conies.

6. If two pairs of opposite sides of a hexagon inscribed in a circle be

parallel, it is easy to prove that the third pair of opposite sides are parallel.

Hence the three pairs of opposite sides intersect on the line at infinity ; and,

projecting this, we have a proof of PASCAL'S Theorem for any conic.

7. Two tangents to any circle are cut homographically by any variable

tangent. For it is easy to see that the pencil formed by joining four points

on one tangent to the centre of the circle is equal to the pencil formed by

joining their corresponding points to the centre. Hence, by projection, we

see that any two fixed tangents to a conic are cut homographically by a

variable tangent.

8. If two triangles be such that the intersections of corresponding sides

are collinear, the joins of corresponding vertices are concurrent. For, pro-

jecting the line of collinearity to infinity, the triangles will be homothetic.

9. If a system of chords of a conic pass through a fixed point P, their

extremities divide the conic homographically. Project the conic into a
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circle, having the projection of P for its centre, and the proposition is

evident.

10. Any two conies can be projected into circles. For, project one of

them into a circle, and one of their common chords to infinity, then the

projection of the other will pass through the cyclic points, and therefore it

will be a circle.

11. Any two conies can be projected into concentric conies.

12. If a system of conies pass through four points, they cut any trans-

versal in involution.

For the conies can be projected into coaxal circles.

13. If two conies be inscribed in a quadrilateral, their eight points of

contact lie on a conic.

Project the quadrilateral into a square, and the proposition is evident.

14. "What properties of conies are obtained from the following by pro-

jection? If a variable conic pass through four fixed points, the locus of

its centre is a conic passing through the middle points of the joins of the

four points.

15. If a chord of a given circle pass through a fixed point, the locus of its

middle point is a circle.

16. If a variable conic be inscribed in a given quadrilateral, the locus of

its centre is a right line bisecting the diagonals of the quadrilateral.

17. The locus of the point, where parallel chords of a given conic are cut

in a given ratio, is a conic having double contact with the given conic.

18. If two triangles ABC, A'B'C' be self-conjugate with respect to a

onic, their six summits lie on another conic.

Project the conic into a circle and the line BC to infinity ; then A, the

pole of BC, will be the centre of the circle; and if, taking the projections

of AB, AC as axes, x'y', x"y", x'"y'" be the co-ordinates of the projec-

tions of A', B', C', respectively, the equation of a hyperbola passing through

the projections of A', B', C", and having its asymptotes parallel to the

axes, is

W, x, y, 1,

*'y', *', y', i,

v"y", x", y", 1,

v'"y'", x'", y'", 1

This hyperbola passes through the projections of the six points. Hence the

proposition is proved.

2 A 2
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19. In the same case the six lines forming the sides of the two triangles

are tangents to a conic.

Project, as in Ex. 18, and it is easy to see that the projections are tan-

gents to a parabola.

20. If a conic be Jnaoribed in a triangle the three lines through its sum-

mits conjugate to the opposite sides are concurrent.

21. The point in Ex. 20, the centre of the conic, and the centroid of the

triangle are collinear.

22. Through a given point A of a conic chords AB, AC are drawn

parallel to conjugate diameters of another conic ; prove that the chord BO
passes through a given point.

274. The projections of focal properties are always imagi-

nary. For the imaginary tangents from a focus are projected

into real tangents, and the cyclic points and
k
the antifoci into

real points. It will be seen that all these results follow from

the projections of the four lines ctxy\/-l y forming an

imaginary circumscribed quadrilateral to a conic, into four real

lines.

EXERCISES.

1. If a variable circle touch two fixed lines the chords of contact are

parallel. Hence, by projection, if a variable conic touch two fixed lines,

and pass through two fixed points 7, /, the chords of contact are concurrent.

2. If a variable circle touch two fixed lines, the locus of its centre is

a right line. Hence, if a variable conic touch two fixed lines, and pass

through two fixed points 7, J, the locus of the pole of the chord 1J is a right

line.

3. If a variable circle pass through a given point and touch a given line,

the locus of its centre is a parabola, having the given point as focus.

Hence, if a circumconic of a given triangle touch a given line, the loci of the

poles of the sides of the triangle are conies inscribed in it.

4. Two lines through the focus of a conic are cut by pairs of tangents

parallel to them in four concyclic points.

5. The circumcircle of the triangle formed by three tangents to a para-

bola passes through the focus. Hence the vertices of two circumtriangles of

a conic lie on a conic.
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6. If a cimimtriangle to a given circle have two sides fixed and the

third variable, the envelope of its circumcircle is a circle. Hence, if a

circumtriangle of a given conic have two sides fixed, and the third variable,

the envelope of a conic passing through two fixed points 7, J of the former

conic, and through the vertices of the triangle, is a conic passing through

the two points I, J. (PROF. J. PURSER.)

7. The locus of the centre of a circle touching two given circles is a

conic section, having the centres of the given circles as foci. Hence, if a

variable conic passing through two given points J, / touch two given

conies also passing through J, /, the locus of the pole of the chord // with

respect to it is a conic inscribed in the quadrilateral formed by the tangents

to the fixed conies at the points /, /.

8. Through any three points can be described six conies to osculate a

given conic.
|

9. The poles of any side of the triangle formed by the three points

in Ex. 8 with respect to the six osculating conies lie on a conic.

275. In projecting a locus described by the vertex of a

constant angle, we consider the pencil formed by its legs

and the lines from the vertex to the cyclic points ;
and it

follows, from 273, that we get a constant pencil. Again,
if the sum or difference of angles be given, we get, by pro-

jection, pencils the product or quotient of whose anharmonic

ratios is constant. This projection is always imaginary.

EXERCISES.

1. The angle contained in the same segment of a circle is constant.

Hence the anharmonic ratio of the pencil formed by lines drawn from any
variable point to four fixed points of a conic is constant.

2. If two tangents to a conic be perpendicular to each other they inter-

sect on the orthoptic circle. Hence the locus of the point of intersection of

tangents to a conic which divide a given line IJ harmonically is a conic

through the points J, /, and the envelope of the chord of contact is a conic

which touches the tangents to the original conic from /, /.

3. If two tangents to a parabola be at right angles, they intersect on

the directrix. Hence the locus of the point of intersection of tangents to



358 Theory of Projection.

a conic which divide harmonically a given line // touching the conic is a

right line.

4. If from any point on a circle two lines be drawn forming a given

angle, the chord joining their other extremities touches a concentric

circle. Hence if 1, J he two fixed points on a conic ; P, Q two variable

points, such that the anharmonic ratio of the four points P, Q, I, J is

constant, the envelope of PQ is a conic.

6. Project the following properties :

If two tangents to a parabola include a given angle, the locus of their

intersection is a conic.

6. If two circles be such that a quadrilateral can be inscribed in one

and circumscribed to another, the chords of contact intersect at right

angles.

7. Confocal conies intersect at right angles.

8. If two tangents, one to each of two confocals, be at right angles, the

locus of their intersection is a circle.

9. If a variable chord of a conic subtend a right angle at a fixed point

not on the conic, the envelope of the chord is a conic.

10. If a variable line, whose extremities rest on the circumferences of

two given concentric circles, subtend a right angle at any given fixed

point, the locus of its centre is a circle.

ORTHOGONAL PROJECTIONS.

276. IfP, Q be two planes intersecting in a line L, and inclined

at an angle 0, and iffrom all the points A^ A^ . . . of a figure Fl

in the plane P perpendiculars le drawn to the plane Q, meeting it

in the points B^ -Z?2 . . .forming a figure Fz ,
the figures F^ Fz

are said to be orthogonally related, Fz is called the projection of

Ft, and Fv the inverse projection ofFz ;
the line L is called the

axis, and cos & the modulus ofprojection.

The following are fundamental properties of orthogonal pro-

jection :

1. To parallel lines in either figure correspond parallel lines

in the other.

2. The ratio of parallel lines is unaltered by orthogonal pro-

jection.
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277. By supposing the plane P to turn round the axis until

it coincides with Q, the figures FI, Fz will be reduced to one

plane. It is evident that any two corresponding points will he

situated on the same perpendicular to the axis at distances

which are in the ratio 1 : cos 0. Hence if the axis of projec-

tion and a perpendicular to it be taken as axes of co-ordinates,

the equation of F2 can be found from that of F by writing

x, Icy for x, y where It = cos 6.

EXERCISES.

1. The line at infinity is projected into the line at infinity. For the

equation of the line at infinity is
Oj.

x + . y + c = 0, and the substitution of

277 leaves this unaltered.

2. A conic of any species is projected into a conic of the same species.

For suppose the conic in FI to he a hyperbola, it meets infinity in two real

points. Hence its projection in FZ meets infinity in two real points.

3. Homothetic figures remain homothetic after projection.

LHUILIER'S PROBLEM.

278. To project a given triangle A^A^A^ into a triangle

which shall be similar to a given triangle CiC2C3 .

SOLUTION. The generality of the problem will not be lessened

by supposing the point B to coincide with A v . On the side

A2A3 of the given triangle construct the triangle D^A^Ai
similar to CiC2C3 ,

and describe a circle SA^ through the

points A^D^ and having its centre on the line A2A3 .

Let the circle cut the line A 2A 3 in the points 8, 8'. Join

AiS, DiS let fall the perpendiculars A2a2, A^ on AI&.
Draw SM, making the angle A^M equal to DiSS', cutting

-42a3 ,
A3a3 in the points -Z?2 , 3 : then A^BzBs is the triangle

required.
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Dem. The triangle A^SM is evidently similar to fySS'.
Therefore A^8 : SM : : fyS : 88'- but SM : 8BZ : : 88' : SA Z .

Hence A,S : SBZ : : fyS : SAZ ,
and the angle A,S 2

= D^SA Z

(const.). Hence the angle SB^A^ SA^. Therefore Ai 2 3

= DiAzA 3 . Similarly, A&B^ = DiA*A t . Hence the triangle

is similar to D^A^ and therefore similar to C^C^
(Q.E.D.)

If through 8' the line S'M1

be drawn parallel to SM, and the

lines AiBz , AiB3 produced to meet it in B'2 ,

'

3> the triangle

A^B'^B'z is the inverse projection of A^A^A-^.

For A^B'z : A^B^ : : A^S' : A^, that is : : a2A 2 : a2J?2 . Hence

the line B'ZAZ is parallel to ^1$, and therefore perpendicular

tO-^/S'. Similarly, A 3B'3 is perpendicular to A^S'. Hence the

triangle A^B'^B'^ is the inverse projection AiA 2A 3 with respect

to the axis A 1 S'.

The foregoing solution is taken from Neuberg,
" Sur les pro-

jections et contre-projections d'un triangle fixe," Bruxelles,

1890. It is due to Gugler, who published it in the 2nd

Edition Traiti de Geometrie descriptive, page 103.
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Cor. 1. If -ZXi be the symetrique of Dl with respect to A 2A S ,

the axes of projection are the bisectors of the angle D^A^I>\

and its supplement.

Cor. 2. The line A lDl is perpendicular to the sides j52-#3 ,

B'ZB'3 of the projections. For let A^D^ intersect 2 3 in P.

Then [Euc. III. xxi.] the angle SA^P = SS'D^ and ^/SP
= ^'SDl (const.). Hence ^PS = SD.S'.

Cor. 8. The perpendiculars -4iP, AP of the projections

A
}
S2S3 , A^B'iE\ are respectively equal to'K^-A -

-^i-O'i),

i (^A + ^'0.
This follows from Sequel, Prop. YIII., Book IY.

Cor. 4. If the axes of projection be given, but the modulus

variable, the locus of summits of triangles similar to the pro-

jections of AiA 2A 3 described on the line A 2A3 is a circle, viz.

the circle AiSS', whose diameter SS' is the intercept which the

axes make on the line AtA 3 . (NETJBEHG.)

Cor. 5. If the modulus be constant but the axes variable,

the locus is a circle.

For let A'i be the symetrique of A
t
. Join &D'1} S'D'^ cut-

ting AiA\ in the points .ZV, IP respectively, we have cos

= A^/A.S' = tan D.SS'/ tan A.SS' = NHjA^; and since 6

is constant andA^constant, HNia constant, and JVis a given

point. Similarly, N' is a given point, and the circle ND\N'
described on N, N' as diameter is a given circle, that is the locus

of D\ is a given circle. Ibid.)

Cor. 6. The circumcircle of the triangle A^A 2A3 will pro-

ject into an ellipse, whose axes will be parallel to the axes of

projection AS, A^S'.

EXERCISES.

1 . If a circle be projected into an ellipse, the centre of the ellipse will he

the projection of the centre of the circle.

2. Any ellipse touching the three sides is touched hy a homothetic ellipse

passing through the middle points of its sides.

3. In the figure ( 278), prove that tan2 = A^
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4. The maximum triangle inscribed in an ellipse is that whose centre of

gravity coincides with the centre of the ellipse. For if the ellipse be

projected [into a circle, the triangle must be projected into an equilateral

triangle.

5. The minimum triangle circumscribed to an ellipse is that whose sides

are bisected at the points of contact.

6. Any hyperbola can be projected into an equilateral hyperbola.

7. Two triangles orthogonally related are orthologique.

Suppose the triangles to be AiAzA 3 , B\BiBz, fig. 278. Now the tri-

angle AiA 2A 3 and the flat triangle ^10203 are evidently orthologique, for

the perpendiculars from A\AzA 3 on the sides of A\azaa are concurrent since

they meet at infinity, and the vertices of A\BzB3 divide the distances

between corresponding vertices of A\AiA$ and A\o.zo.z in the same ratio.

8. The tangents to an ellipse at the summits of its maximum inscribed

triangle are parallel to the opposite sides of the triangle. Hence the equa-

tion of an ellipse referred to its maximum inscribed triangle is

= 0. (852)

This is called the Steiner ellipse of the triangle. The contrast between

its equation and that of the circumcircle is worthy of note.

9. If the triangle A\AzA3 turn in its own plane round the centre of its

circumcircle, and be projected in all its positions on a plane Q, all the pro-

jected triangles will be inscribed in the same ellipse. Prove that if the

axes of the ellipse be taken as axes of co-ordinates, the co-ordinates of the

points BI, 2, 3 will be

k cos (d>i + A.) I
k cos

(<t>z + A) l k cos
(<J>3 + A)

(853)
/fc'sin (<pi + A) ( k' sin (fa + x) ( k' sin

(<f>3 + A.)

4>i 4>2> <t>3 being constants, and A. variable.

10. Construct two triangles orthogonally related, the first of which shall

be equal to a given triangle afly, and the second similar to another given

triangle a'P'y'.

11. If b', b"
t
V" be the semidiameters of an ellipse parallel to the sides

of an inscribed triangle, and if a, b be the semiaxes of the ellipse, prove

that the circumradius of the triangle is Vb"V" \ab. (M'CuLLAOH.)
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12. The modulus in the figure of 278 is given by the equation

cos 6 + see B = 2 (cot AS cot J33 + cot % cot A z}. (NEUBERG.)

Cor. All equilateral triangles in the same plane are projected on any

plane into triangles having the same Brocard angle.

SECTIONS OP A CONE.

279. A cone of the second degree is the surface generated by
a variable line passing through the circumference of a fixed circle

called the base, and through a fixed point not in the plane of the

circle. The generating line, in any of its positions, is called an

edge of the cone, the fixed point its vertex, and the line joining

the vertex to the centre of the base the axis of the cone.

The line generating the cone being produced indefinitely both ways, it is

evident that the complete surface consists of two sheets united at the vertex,

and the whole is considered only as one cone, of which the vertex is a node

or double point.

When the axis of the surface is at right angles to the plane

of the base, it is called a right cone
;
in other cases it is oblique.

In the following propositions a plane through the axis, per-

pendicular to the plane of the base, will be the plane of reference,

and the sections of the cone will be understood to be those made

by planes at right angles to the plane of reference.

280. Sections of a cone made by parallel planes are similar.

This is evident, for the sections are homothetic with respect

to the vertex.

Cor. \. Any line drawn through the vertex will meet the

planes of two parallel sections in homologous points with respect

to those sections.

Cor. 2. The sections made by planes parallel to the base are

circles.

DBF. A section whose plane intersects the plane of reference in

a line antiparallel to the diameter of the base is called an antiparallel

section.
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281. If an oblique cone ABC be cut by a plane ELF in an

antiparallel position, the section will be a circle.

Dem. Through any point R
in EF draw a plane HLK par-

allel to the base. Then, since

the planes ELF, HLK are both

normal to the plane ABC, their

common section (Euc., XI. xix.),

RL, is normal to it. Hence (Euc., B<

III. xxxv.), RL*=HR . RK. But

from the hypothesis, the four points H, E, K, F are concyclic.

Hence ER .RF= HR . RK; therefore ER. RF = RL2
. Hence

the section ELF is a circle.

Cor. 1. Any sphere passing through the base of a cone will

cut the cone again in an antiparallel section.

Cor. 2. If a sphere be described about a cone, its tangent

plane at the vertex is antiparallel to the base.

282. Any section of an oblique cone which is not antiparallel is

either aparabola, an ellipse, or a hyper-

tola.

1. Let the section be parallel to an

edge of the cone.

Let AN be the intersection of

the section with the plane of refe-

rence. Then since AN is parallel

to the edge CD, and NE parallel

to the diameter of the base, the

triangle ANE is given in species.

Hence the ratio of AN: NE is given; and since AD is equal
to FN, the ratio of the rectangle AD . AN: FN . NEis given ;

but FN. NE = NP*. Hence the ratio AD . AN: PN* is given ,

therefore PN2 varies as AN. Hence the section is a parabola.

Cor. It the point Q be taken in CD, such that DC . DQ
- DA2

,
then DQ = latus rectum of the section.
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2. Let the section cut all the edges of one sheet of the cone.

Let A, B be the [vertices of the

section. Draw any section EF
parallel to the base, intersecting

the former in the points P, P'.

Then, since the planes APB, EPF
are both normal to the plane of re-

ference, their common section is

normal to it
;
hence NP is per-

pendicular to EF. Therefore PNZ

= EN. NF.

Again, from the pairs of similar triangles BAG, BNF; ABD,
ANE, we get

AB2 :AG.BD:: AN. NB-.EN. NF or PN\

Hence the ratio AN. NB : PN2
is given, and therefore the locus

of P is an ellipse.

3. Let the plane of section meet loth sheets of the cone.

The section in this case will

be a hyperbola. The proof is

the same as 2.

Cor. The rectangleA G.BD
is equal to the square of the

conjugate diameter.

283. If a right cone enve-

loping two spheres be cut by a

plane touching loth of them,

the points of contact will be

the foci of the section.

and QTTETELET.)

Dem. Take any point P in

the section. Join CP meeting

the planes of contact in D, D'.

Join PF, PF'. Then PF. = PD, being tangents to a sphere,

and PF' = PP. Hence PF+ PF'= DD' = distance on an edge
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of the cone between the planes of contact. Hence PF + PF' is

constant, and the proposition is proved.

Cor. The plane of section intersects the planes of contact in

the directrices of the section.

C

EXERCISES.

1. The orthogonal projection of the section APB on the base of the cone

is a conic having a focus at the centre of the base.

2. If the section of a cone by a plane be a hyperbola, prove that the

asymptotes are parallel to the edges in which the cone is cut by a plane

parallel to the section. (Make use of 280.)

3. If a right cone enveloping two spheres be cut by a plane which also

cuts the spheres in two circles, the sum or difference of the tangents to the

circles from any point in the section of the cone is constant.

4. If e be the eccentricity of the conic in Ex. 3, prove that if 8 denote

the distance between the centres of the circles, 5/(sum or difference of tan-

gents)
= e.

5. The eccentricity of any section of a cone is proportional to the cosine

of the angle which the axis of the cone makes with plane of section.
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6. The planes of contact of the spheres intersect the plane of the circles

in lines which correspond to the directrix. That is, if t he the tangent from

any point in the conic, and p the perpendicular on the corresponding line,

tip
= e.

7. The latus rectum of the section is equal to twice the perpendicular

from the vertex on the plane, multiplied hy the tangent of half the vertical

angle.

8. If Pbe any point in the circumference of the section, prove that the

right cone, having F'P, PF, PC as edges, has the tangent at P to the curve

for its axis.

9. The locus of the vertex of all right cones, out of which a given ellipse

can be cut, is a hyperbola, having for summits and foci the foci and sum-

mits of the ellipse. The relation between the ellipse and hyperbola are

reciprocal.

10. If through the vertex of an oblique cone standing on a circular base

a plane be drawn perpendicular to one of its edges, this plane will cut the

base in a line whose envelope is a conic, having the foot of the perpendicular
from the vertex on the base as focus.

11. If a right cone be cut by a plane, the perpendiculars from the vertex

of the cone on any tangent to the section, and from the point where the

plane meets the axis, are in a contrary ratio. (NEUBERG.)



CHAPTER XII.

THEORY OF HOMOGRAPHIC DIVISION.

284. If be the origin, and the abscissae OA, OS, the

roots of the o A C B D

equation
'-'-'

-"---- *

ax* + 2hx + b = 0, and 00, OD the roots of
' + 2h'x + V =

;

then, if C, D he harmonic conjugates to A, B,

aV + a'b - 2hh' = 0. (854)

Dem. If the abscissa of C be a?', its polar, with respect to

ax2 + 2hx + b, is axx' + h (x + x'} + b =
;
and the points

whose abscissa? are #, x' will be harmonic conjugates with

respect to A, B, and therefore x, x1

will be the roots of

a'x2 + 2h'x + b' = 0. Hence

and, substituting in axx' + h (x + x'} + I = 0, we get

aV\ a'l - 2hh' = 0. Compare 42, Cor. 2,

Cor. 1. The point pair denoted by

Axx1 + B (x + a;') + C =

are harmonic conjugates to the pair

Ax2 + 2x +0=0.

285. If the three point pairs

0^ + 2^+5 =
0, a'x* + 2h'x+b' = 0, a"x* + 2h"x + I" =

have- a common pair of harmonic conjugates, the determinant
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a,

',

"

h', V,

h", V
= 0. (855)

Dem. Let Atf + 2Hx + JB = be the common pair of har-

monic conjugates : then we have three equations

Aa - 2Hh + IB =
0, &c.,

and eliminating A, H, B we get (855).

Cor. 1 . If the point pair ax2 + 2hx + b = be harmonic con-

jugates to

V=a'x2 + 2h'x + b' = and to V=et'&+ 2h"x + b" = Q,

they are also harmonic conjugates to Z7+ kV= 0.

Cor. 2. If the line pair ax2 + 2hxy + by
2 = be harmonic

conjugates to the line pair a'x2 + 2h'xy + Vy
2 =

0, then

ab' + a'b - 2hh' = 0.

Cor. 3. The line pairs

U=ax2 + 2hxy + by
2 = 0, F= a'x2 + 2k'xy + b'y-

=

have the line pair

(ah
1 -

a'h} x
2 + (aV

-
a'b} xy + (hb'

-
h'b} f =

as harmonic conjugates. For each of the former line pairs fulfil

with this the condition of harmonicism. The last equation may
be written

dU dV dU dV
-T-T- :T-T- = O -

(856 )ax dy dy dx

Cor 4. If the line pairs U= 0, V= 0, be written in AEOX-

HOLD'S notation thus,

=
0,

= 0,

2B
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the condition that they form a harmonic pencil is

(857)

where, as usual, 2, &c., have no meaning until the multipli-

cation is performed.

286. If a? = 0, bx
2 = be the equations of two conies, it is

required to find the locus of a point whence tangents to them form

a harmonic pencil.

Let x he the point ;
then if y he a point on a tangent to a* =

0,

the equation of a pair of tangents from y to ax
z = is got hy

substituting the expressions

=
( 260, Cor. 2).

(
858 )

for \j, A2 ,
X3 in the tangential equation

Hence the pair of tangents are

and putting j/3
= 0, the pair of points, where the tangents meet

the third side of the triangle of reference, are given by the

equation
=

;

where A^ Az ,
A 3 have no meaning until the multiplication is

performed. Similarly we get from the conic, bx
* = 0,

+ (H&i - -B^yi}* = 0.

Hence ( 285, Cor. 4) the condition of harmonicism is

i
- A&,

= 0;

or

ii

0. (859)
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Similarly, the envelope of Xx ,
which cuts the conies a* =

0,

bz
z = harmonically, is

Li, ^2, X3 ,

2

!i, 2, 3 ,
= 0. (860)

hi ^2, ^3

The two conies (859), (860) may be called, respectively,- the

point and line harmonic conies of a/ = 0, bx
* = 0. Their importance

in the theory of a pair of conies was noticed by DK. SALMON

( Cambridge and Dublin Math. Journal, vol. ix., p. 30). They are

due to STAUDT, who published them in 1834, in his "
Niirnberger

Programm."
The equations (859), (860) expanded are

? 4 7? /t ~R \ <r <r n /'R C;Q'N
^12 -^*-ll-^23 -^-*-23-'-'ll/ *^2*^3 ^j I Owi/ 1

and

0. (860')

Cor. The point and line harmonic conies of a^xf + azxz
2

+ 3#3
2 = 0, and b&f + b2x^ + b3x3

z = are, respectively,

A (02^3 + 3^) 1
Z + 2^2 (aj>\ + l^s) ^2

2 + 3^3 (%^2 + 2^l) % =
0,

(861)
and

(azb3 + + a

PKOJECTIVE Rows.

= 0. (862)

287. DBF. Pairs of points X, X' whose alscissce x, x' with

respect to two fixed points 0, 0' on two given lines L, L', or whose

ratios of section X, X' with respect to two pairs offixed points 0, 0^

on L, and 0', O/ on L' satisfy equations of the first degree of the

forms

axx' - bx - b'x + c = 0, (863)

.'
- b,X - /X' + Ci = (864)

2 B 2
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are said to mark protective rows (French, Ponctuelles projectives,

German, ProjeUivischen Punlctreiheri} on Z, L1
.

It is necessary to show that (863), (864) are consistent. Let

m', X

A' = X'O'/X'O,' =
a/l(x'

- m'\

and eliminating x, x' between these and (863), we get an equa-

tion of the form (864).

Projectile rows have a 1 to 1 correspondence : that is, to every

point of one row corresponds one, and only one, point of the other.

For it is evident that being given the value of either variable in

(863) or (864), we get only one value of the other.

Cor. 1. The equations (863), (864) retain their forms after

transformation to new origins on the lines L, L'.

For, since the points X, X' have a 1 to 1 correspondence before

transformation, they must have it after transformation,
j __,

Cor. 2. If A, S, C, A', JB', C' be two triads of fixed points on

two fixed lines, and X, X' variable points on the same lines

satisfying the relation (ASCX} = (A'B'C'X'), then X, X' mark

projective rows on these lines

For it is evident that X, X' have a 1 to 1 correspondence.

Cor. 3. A pencil of lines marh projective rows upon two trans-

versals. In other words, two perspective rows are projective.

288. In two projective rows the anharmonic ratio of any four

points of one is equal to the anharmonic ratio of the four corre-

sponding points of the other. In other words, projective rows are

Jiomographic.
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Let AA, BB', two corresponding point pairs, be taken as

origins. Then we have A = XA/XB, A' = X'A'jX'B'. Now, if

X coincide with A, X' will coincide with A'
; hence, when

X = 0, X' = 0. Similarly, if X coincide with B, X' will with B f

,

and it follows that when A = <x>, A' = o>
;
hut if A, A' be each equal

to zero in (864), we get c^= 0, and if each equal to infinity, we have

!
= 0. Therefore, when pairs of corresponding points are taken

as origins the equation (864) becomes b\ + b'Xf = 0, or A = k\'.

Now, if (7C", DD' be the corresponding point pairs, we have

CA_ C'A' _ _
'CB~

k
~C

7B"
*

DB D'B1
'

Hence (ABCD] = (A'B'C'D'}.

Cor. Two projective rows are in perspective when three

corresponding point pairs are in perspective.

289. POINTS WHICH CORBESPOND TO INFINITY. Suppose a >< 0,

the equation (863) can be written

xx' - mx - m'x' + n =
0, or (x

-
m'} (x' m) = mm1 - n = p

suppose. Now, transferring the origins to points /, J, whose

abscissae on Z, L' are m' and m, the new abscissae are

y = IX = x -
m', and y'

= JX' = x' - m.

Hence yy' = p. Then /, J are points which correspond to in-

finity. For, if y =
0, y'

=
oo, and if y'

= 0, y = oo.

Cor. The standard forms to which (863), (864) can be re-

duced, are yy' =p, (865)

A - A'. (866)

290. SIMILAR Rows. If a = in (863), the relation becomes

Ix + I'x' - c = 0, that is x = -
b'jb (x'

-
cjb'~),

or x = m (x'
- n\

and, transferring the origin 0' to a point which has n for
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abscissae, x = my'. Here there is a constant ratio between the

segments on L and the corresponding segments on Z', and when
x =

> y = - Hence the points /, J are both at infinity.

Cor. 1. If the points /, 7be at infinity, the rows are similar.

Cor. 2. If m = I, homologous segments on Z, L' are equal.

EXERCISES.

1. If AT, BT be two tangents to a conic, XX' any variable tangent,

T

the points X, X' divide &tAT, -BThomographically. For, evidently, there

is a 1 to 1 correspondence.

2. If a tangent parallel to BT cut AT in I, and a tangent parallel to^T
cut BTin /, then the rectangles IX . JX', IA.JT, IT. JB are all equal.

3. Two fixed tangents to a parabola are divided proportionally by a variable

tangent. For it is easy to see that the points /, / are at infinity.

4. If IX, JX' be parallel tangents to a central conic /, J being the points

of contact, and if any variable tangent cuts them in X, X', then IX . JX'
= constant.

PKOJECTIVE PENCILS.

291. DBF. Two pencils are said, in relation to each other, to be

projectile when the ratios of section A, A/ of two homologous rays

with respect to any origins ofraysAB,A'B' satisfy a relation of the

form a\\' - bX - b'X' + c = 0.
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In two projective pencils the anharmonic ratio of any four rays

of one is equal to the anharmonic ratio of the four homologous rays

of the other.

Dem. The preceding relation gives A' = (bX
-

c)/(aX
-

b'}.

Now, let (A1? A/) (A2 , A/) . . . (A4 , A/) be the ratios of section of

four pairs of corresponding rays. Then it is easy to verify

-A3\
_
/At

- AA
>

/\/ - A/\
.
/A/ - A/N

A3 / yA2 A4 y v^Aj X3 j \\% ,

it suffices to replace A t

'

by (JAj
-

c}/(aXi b'), &c.

^or. 1 . If two pencils be such that the anharmonic ratio of

three fixed rays, A, , C, and a variable ray X of one be equal to

the anharmonic ratio of three fixed rays, A'
, B', C", and a variable

ray X' of the other. Then the anharmonic ratio of the pencil

formed by X in four different positions is equal to that formed

by X' in the corresponding positions. Because, to a ray of one

corresponds one, and only one, ray of the other.

Cor. 2. Any two projective pencils are cut by two trans-

versals in projective rows.

Cor. 3. If two homographic pencils be such that three pairs

of homologous rays intersect in a right line, then all pairs of

homologous rays intersect in a right line.

EXERCISES.

1. Two pencils whose vertices lie on a conic, and whose corresponding

rays intersect on the same conic are equal, for the rays have a 1 to 1 corre-

spondence.

2. If four chords of a conic pass through the same point, the anharmonic

ratio of four of the points in which these chords meet the conic is equal to

the anharmonic ratio of the remaining four points in which they meet it.

For, let X, X' be the points in which any of the chords meets the conic,

and let 0, 0' be two fixed points on it. Join OX, O'X' ;
these will be rays

of two pencils, whose vertices are 0, 0' , and they evidently have a 1 to 1

correspondence.

3. If two conies have double contact, the anharmonic ratio of four of

the points in which any four tangents to one meet the other is equal to that
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of the remaining points in which the same tangents meet the curve, and
also the same as that of the points of contact. (TOWNSEND.)

4. Maclattrin's Method of Describing Conies. The locus of the vertex of

a variable triangle whose sides pass through three fixed points, and whose

base angles move on fixed lines, is a conic.

5. Newton's Method of Describing Conies. ABCD is a cyclic quadri-

lateral, the points A, D are fixed, and the angle BACi& given in magnitude ;

then, if B describe any right line, or if it describe any conic passing through
the points A, D, C will describe another conic passing through A, D.

SUPERPOSED Rows.

292. Upon the same line L we can have pairs of points

X, X', whose abscissas #, x' with respect to two given origins

satisfy an equation of the form

axaf - bx - Vx1

+ c = 0.

In this case the rows are superposed. In superposed rows the

origins may or may not coincide.

293. DOUBLE POINTS. Double points of superposed rows are

those in which conjugate points coincide. If the origins 0, &
coincide, then, for the double points we shall have x =

x', and

their abscissa are given by the equation

ax2 -
(b + I'} x + c = 0. (867)

Hence there are two double points, real and distinct, coincident,

or imaginary. When they are real and distinct, let them be

denoted by F, F'
;
and let (A, A'\ (X, X') be two corresponding

point pairs. Then ( 288) we have (FF'AX) = (FF'A'X'),
or ( 39),

AF XF A'F X'F AF A'F XF X'F
AF1

' XF A^'XF1 ' "
AF''A7F7

Hence (FF'AA
1

)
= (FF'XX"). (868)

Therefore the (inharmonic ratio of the double points and any

homologous point pairs is constant.
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294. If the double points F, F' coincide in F, and this be

taken as origin, the equation (867) will have two roots each

equal to zero. Hence c = 0, b + V =
0, and the relation of pro-

jectivity becomes axx' - b (x
- x )

= 0, or

l/x-l/x' =l/m. (869)

295. DOUBLE POINTS FOUND GEOMETEICALLY. The following

geometrical construction for the double points holds, whether

the origins do or do not coincide. Thus, let A, B, C be three

points of one system ;
A'

, B', C' the corresponding points of

the other; then if X be the double point, we have (XABC}
= (XAB'C'}

X
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EXERCISES.

1. Inscribe in a conic section a polygon all whose sides pass through

given points.

SOLUTION. Assume any arbitrary point a for the vertex of the polygon,

and form a polygon whose sides pass through the given points ; the point a',

where the last side meets the conic, will not in general coincide with a.

If we make three such attempts, we get three pairs of points a, a'
; b, b'

;

c, c' ; then a point X, such that (Xabc) =
(Xa'b'c') will be the point

required.

2. In a triangle inscribe another triangle whose sides pass through given

points.

296. Two protective pencils which are united at their summits

in the same plane are said to be concentric or superposed. In

intersecting them by any transversal, we obtain two projective

rows superposed. These rows have double points, real or

imaginary, which joined to the common summit give two

double rays of the pencils.

INVOLUTION.

297. If two systems of homographic points on the same line have

a pair of corresponding points (A, A'} permutable, then any pair

of corresponding points of the systems are permutable.

Dem. Let a, a' be the abscissae of A, A'
; then, by hypo-

thesis, we have

aaa' -la- b'a! + c = 0, aaa! - la! - I'a + c = 0.

Hence, by subtraction,

(b
-

b'}(a
-

a')
=

0, and since a >< a', b =
b',

and the relation becomes

axxf -
b(x + x'} + c =

; (870)

and since it is symmetrical in #, x', the points X, X' are per-

mutable.
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DBF. Two superposed projective rows in which homologous

points are permutable are said to be in involution.

298. CENTRAL POINT OF INVOLUTION. Supposing ><0, 3x0,
the equation (870) may be written xx' - m(x + x") + c' = 0, or

(x
-

m}(tf
-
m) = n. (871)

where n -- m* - c'. Then, taking the point whose abscissa is m
as origin, denoting it by 0, is called the central point of the

involution, and equation (871) gives

OX.OX' = n, (872)

n being a constant. "We see that the central point is that

which corresponds to infinity (/ or J} in the general case.

299. DOUBLE POINTS OF INVOLUTION. When two homologous

points coincide in one, such a point is called a double point.

Now, if X, X' coincide in (872), we have OX = y^n ;
if n > 0,

there are two double points, which are symetriques with

respect to the central point. In this case homologous point pairs

are situated at the same side of the central point, and the involu-

tion is said to be hyperbolic. If n < the double points are

imaginary, and the involution is called .Elliptic.

300. In an hyperbolic involution, any two homologous points

divide harmonically the distance between the double points.

Dem. Let F, F' be the double points, then we have (872)

OX. OX' = n and OF* = OF'* = n; .-. OX. OX' = OF*; but

being the middle point of FF', this equality indicates that

X, X' are harmonic conjugates to FF'. Reciprocally, all the

point pairs which divide harmonically a given segment FF'

belong to an involution.

Cor. 1. If three point pairs

ax* + 2hx 4 b =
0, a'x* + 2h'x + b'=0, a"x* + 2h"x + b" =

form an involution, they have a common pair of harmonic con-

jugates. Hence the condition of involution is the determinant

(855).
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Cor. 2. If (a, a'), (b, V], (c, </) be the abscissae of three point

pairs in involution, then the determinant

aa', a + a', 1,

b + b', 1,
= 0. (873)

cc', c + c', 1

Cor. 3. If U = 0, F= be the equations of any two point

pairs, then U+ kV = forms an involution with 7" and V.

301. SYMMETRIC INVOLUTION. If a = 0, the equation of invo-

lution (870) reduces b (x + of)
- c = or (x

-
c/2b} -f (z'-c/Zb) = 0,

and transferring the origin to the point whose abscissa is c/2b.

Supposing this point 13, we have EX + EX' =
0, then the

involution is formed by point pairs, which are symetriques

with respect to E. E is a double point, the second double

point is at infinity.

This involution having two real double points is hyperbolic.

302. If two superposed protective pencils be such that a pair

of homologous rays are permutable, then the rays of every

homologous pair are permutable, and the two pencils are said

to be in involution. Their theory is reduced to that of points in

involution by cutting the pencils by a transversal. Pencils in

involution are also divided into hyperbolic and elliptic. The

former has two real double rays, which are harmonic conjugates

to any pair of homologous rays. As a particular case, we may
note the involution formed by line pairs symmetrical with

respect to a fixed axis (one of the double rays, the ray perpen-

dicular to this axis is the second double ray). This is isogonal

involution. The elliptic involution has two imaginary double

rays. The most remarkable case is orthogonal involution,

formed by the sides of a right angle turning round its summit.

If we take the sides of one of these angles for axes of co-

ordinates, the angular coefficients of two conjugate rays of the

involution satisfy the equation mm' + 1 = where m, m' are ratios

of section relative to OX, Y. Hence, making m = m', the double

rays are defined by m? + 1 = or m = i. Hence, the double rays

are the imaginary lines from to the cyclic points.
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EXERCISES.

1. Given two homologous point pairs of an involution, show how to

find the central point and the double points.

2. A system of conies passing through four fixed points cuts any trans-

versal in involution.

For, let S, S' be two fixed conies passing through the points, then S-t- kS'

will denote a variable conic through them
;
and if S, S' be given by their

general equations, then, if the transversal be the axis of x, the point pairs

in which they are intersected by the transversal are given by the equations

ax* + 2gx + e, a'x2 + 2g'x + c', and axz + 2gx + c + k (a'x
i + Ig'x + c') .

Hence
( 300, Cor. 3), they are in involution.

3. The three pairs of opposite sides of a quadrangle are cut in involution

by any transversal.

4. Coaxal circles are cut in involution by a transversal : the points of

contact of the circles of the system which touch the transversal being the

double points, and the central point that in which the radical axis meets it.

5. A system of conies having a common self-conjugate triangle cut in

involution any line passing through a summit of the triangle.

6. For every two projective rows on different lines there exist two points,

for each of which the rows are isogonal, that is, the angles subtended by
one row are respectively equal to those subtended by the other.

(TOWNSEND.)
7. If aa', bb', ec' be three point pairs in involution

ab'. be', ca' + a'b.b'c. c'a- 0. (874)

ab'. be. c'a'+ a'b . b'c'.ca = 0. (875)

ab . b'e'. ca'+ a'b'. be . c'a = 0. (876)

ab . b'c . c'a'+ a'b'. be', ca = 0. (877)
i

8. A common tangent to any two of three circumconics of a quadrilateral

is cut harmonically by the third.

9. Show that the following are special cases of Ex. 8 :

1. If through the intersection of common chords of two conies a tangent

be drawn to one of them, it is cut harmonically by the other.

2". If through any point on the chord of contact of two tangents to a

conic a third tangent be drawn intersecting both, it is divided harmonically

by the tangents and the point and chord of contact.



CHAPTER XIII.

THEORY OF DUALITY AND RECIPROCAL POLARS.

303. It has been seen in Chapter III. that every circle has

two forms of equation, viz. trilinear and tangential. The same

has been shown in Chapters IX. and X. to hold for every conic,

and in fact it is universally true for all curves. Conversely

every equation represents two distinct curves, according as it is

regarded in point or line co-ordinates. Thus, in l/x+m/y+n/z=Q,
it x, y, z be trilinear co-ordinates, it represents a conic circum-

scribed to the triangle of reference
;
and if they denote tan-

gential co-ordinates, it is the equation of an inscribed conic.

It follows as an inference from this twofold interpretation of

equations, that every theorem which gives a graphic property

of a conic has another related theorem called its reciprocal, and

that the same demonstration proves both theorems. This two-

fold interpretation is called the principle of Duality.

EXERCISES.

1 . S fcS' = represents in point co-ordinates the general equation of

a conic passing through the four points common to S and S', and in line

co-ordinates the general equation of a conic inscribed in the quadrilateral

formed by the four common tangents to S, S'.

2. ay k&S = in point co-ordinates denotes that the rectangles con-

tained by the perpendiculars from any point of a conic on a pair of opposite

sides of an inscribed quadrangle is in a given ratio to the rectangle contained

by the perpendiculars from the same point on another pair. In line

co-ordinates it proves that the product of the distances of any tangent to a

conic from a pair of opposite vertices of a circumscribed quadrilateral is in
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a given ratio to the product of the distances of the same tangent from

another pair of opposite vertices.

3. Interpret the tangential equation \v = k/j.
z

.

4. If two conies have each double contact with a third conic, their poles

of contact and a pair of opposite vertices of the complete quadrilateral

formed by their common tangents are collinear, and form a harmonic row.

5. If three conies have each double contact with a fourth, six of the

points of intersection of common tangents form the opposite vertices of a

complete quadrilateral, and the remaining six may be divided into four sets

containing three each, such that the pairs of common tangents which inter-

sect in them are tangential to a conic.

6. If three conies touch the same pair of lines, the intersection in each

case of the remaining pair of common tangents are collinear.

304. Since the coefficients in the tangential equation of a

conic occur in the co-ordinates of its centre, and in the equations

of its orthoptic circle and foci, when the tangential equation is

given, we can at once write out its orthoptic circle, foci, and

centre. Thus the tangential equation of the envelope of the

line, cutting harmonically the conies

(a, b, e, f, g, h] (*, y, I)
2 =

(a', V, c', /', g', h'} (x, y, I)
2 = 0,

is (be' + b'c - 2/') A
2 + (ca

f

+ c'a - 2gg'} p? + (aV + a'b - 2M> 2

+ 2 (gh' + g'h
- af -

a'/)/** + 2 (hf + h'f- lg'
-
Vg] v\

+ 1(fg'+f'9-ch' -c'

The orthoptic circle is

+ (W + Vc - Iff + ca! + c'a - <2gg'}
= 0. (878)

EXERCISES.

1. The locus of the centre of a conic inscribed in a quadrilateral is a

right line.

2. The orthoptic circles of conica inscribed in a quadrilateral form a

coaxal system.
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THEORY OP RECIPROCAL POLARS.

305. The principle of duality may be also inferred from the

theory of poles and polars, some propositions in connexion with

which have been already given ( 183).

DBF. If any figure A be given, by taking the pole of every

line and the polar of every point in it with respect to any arbi-

trary conic S, we construct a new figure ,
which is called the

polar reciprocal of A with respect to S. The conic S is called

the reciprocating conic.

From the definition, we have at once the following re-

sults :

A.
_ --
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EXERCISES.
1. Any two fixed tangents to a conic are cut homographically by any

variable tangent.

Let AT, BT be two fixed tangents

touching the conic at the points A, B ;

CD any variable tangent touching it at

P. Join AP, BP. Now AP is the ^ . .

polar of C, and BPoiD; and if P take n

four different positions, the point will

take four corresponding positions, and so

will D. Then the anharmonic ratio of

the four positions of C will be equal

to the anharmonic ratio of the pencil from A to the four positions of P.

Similarly, the anharmonic ratio of the four positions of D will be equal to

the anharmonic ratio of the pencil from B to the same positions of P; but

the pencils from A and B are equal. Hence the anharmonic ratio of the

four positions of C is equal to the anharmonic ratio of the corresponding

positions of D.

From the theorem just proved it follows, that if two linos be divided in

equal anharmonic ratios by four others, the six lines are tangents to a conic,

And, more generally, If two lines be divided homographically, the envelope of

the join of corresponding points is a conic.

2. Any four fixed tangents to a conic are cut by a variable tangent in

points whose anharmonic ratio is constant.

Dem. The joins of the point of contact of the variable tangent to the

points of contact of the fixed tangents are the polars of the points of inter-

section of the variable tangent with the fixed ones ; but these form a con-

stant pencil. Hence the proposition is proved.

3. If a hexagon be described about a conic, the joins of opposite angular

points are concurrent.

For the circumhexagon is the polar reciprocal of the inhexagon, and the

joins of its opposite vertices are the polars of the intersection of opposite

sides. Hence the proposition is the reciprocal of PASCAL'S Theorem.

4. The three pairs of points, in which a transversal meets three circum-

conics of a quadrilateral, are in involution.

6. The common tangent to any two of three circumconics of a quadri-

lateral is cut harmonically by the third conic. Hence, if three conies

S, S', S" be inscribed in a quadrilateral ;
and if from P, a point of inter-

section of S, S', tangents be drawn to S", these form a harmonic pencil

with the tangents at P to S, S'.

2c
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6. From Ex. 2 it follows that the intercepts on any variable tangent

to a parabola made by three fixed tangents have a given ratio.

7. The reciprocal of Ex. 5, 302 is pairs of tangents to a system of

conies having a common self-conjugate triangle, drawn from any point in

one of its sides, form a pencil in involution.

8. The six sides of two inscribed triangles of a conic are such that any

two are cut in equal anharmonic ratios by the remaining four. Hence

they touch another conic.

Reciprocally, if two triangles circumscribe a conic, the six vertices lie on

another conic.

9. The locus of the pole of a given line, with respect to any circum-

conic of a quadrilateral, is another conic. Hence the envelope of the polar

of a given point, with respect to a conic inscribed in a quadrilateral, is

a conic.

307. When the reciprocating conic is a circle, its centre is

called the centre of reciprocation. The following results will

be evident from a diagram :

1. The angle between any two lines is equal or supple-

mental to the angle at the centre of reciprocation subtended by
the join of their poles.

2. Since the nearer any line is to the centre of recipro-

cation the more remote its pole, it is evident that the pole of

any line passing through the centre must be at infinity, and

in the direction perpendicular to the line through the centre.

Hence it follows, since two real tangents can be drawn from

any external point to a conic, that the polar reciprocal of

that conic with respect to is a hyperbola. Similarly, the

polar reciprocal of any conic with respect to any point on it

is a parabola, and its polar reciprocal with respect to any
internal point is an ellipse.

3. If a conic reciprocate into a hyperbola, the asymptotes of

the hyperbola are perpendicular to the tangents drawn from the

centre of reciprocation to the original curve.

4. If a conic reciprocate into an equilateral hyperbola, the

locus of the centre of reciprocation is the auxiliary circle.
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5. The polar of the centre of reciprocation with respect to

any conic will reciprocate into the centre of the reciprocal

conic.

6. If the original conic be a

circle, its centre will reciprocate

into the directrix.

A'

308. If be the centre of

reciprocation ;
ABC the tri-

angle of reference for trilinear

co-ordinates; A'B'C' its reci-

procal ;
L the polar of any point

P
; Aj, A2 ,

A3 perpendiculars from

A', B',C' on L
',
and a,, cuj, a3 the B

trilinear co-ordinates of P; then (Sequel, Book III., Prop, xxvii.),

if OA', OB', 00' be denoted by p lt p2 , p3 ,
we have

a, = OP. -, &c.
Pi

Hence, if (a, b, c, f, g, A)(a 1? a2 , c^)
2 = be the equation of any

conic, the equation of its reciprocal with respect to the circle

will be

^, ,

^3 Y=0. (879)
Pi P2 PS /

Again, if (A, B, C, F, G, H)(\lt A2 ,
A3 )

2 = be the tangential

equation of a conic, where AI? A2 ,
A3 denote perpendiculars from

the angles A', B', C' of the triangle of reference on any tangent

L to the conic
; then, if xlt x2 ,

xz be the trilinear co-ordinates

of with respect to the reciprocal triangle ABC, we have

Xipi
= r2

,
where r is the radius of reciprocation. Hence, elimi-

nating P! between this equation and

OP. A,

we get

2c2
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and similar values for A2 ,
A3 . Hence the transformed equa-

tion is

(A, 3, C,F, G,S}(
a
-\

*
jY=0. (880)

\ X\ X% X3 j

309. It is required to find the centre of reciprocation, so that

the polar reciprocal of a given triangle ABC may be similar to

another given triangle A'B' C'.

SOLUTION. On the sides of ABC describe triangles A'BC,

AB'C, ABC' similar to A'B' C''. The circumcircles of these

triangles will have a common point D, which will be the

required centre.

Dem. Let E^ E^ Ez be the circumcentres of the triangles

A'BC, AB'C, ABC'. Join AD, D, CD. It is easy to prove

that these lines produced pass respectively through A', B', C'.

Join E,E^ EZE^ E^E2 . These lines are respectively perpen-

dicular to AD, JBD, CD. Hence the angle E^E^E^ is the sup-

plement of DC, and the angle BA'C is also the supplement
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of BDC
;
therefore E3E,E2

= BA'C. Similarly, E,E2E3
= AB'C,

and E2EzEi = A C'B. Hence the triangle E&E* is similar to

A'S'C".

Again, the polars of the points A, JB, C, with respect to any

circle whose centre is D, are perpendiculars to AD, BD, CD,

respectively, and therefore parallel to the sides of the triangle

E^E^Ez. Hence the reciprocal of the triangleABC with respect

to D is similar to A'B'C'. In like manner, if the triangles

A'BC, AB'C, ABC' be described inwards, the point of inter-

section D' of their circumcircles will be another centre of

reciprocation.

DBF. The triangle EiE2Ez formed by the circumcentres is

called Lionnefs triangle, after M. LIONNET, who, in the Nouvellex

Annales, 1869, p. 528, made use of a construction similar to the

foregoing in solving Lhuilier's projection problem, 278.

Cor. IfE be the circumcentre of the triangle ABC, the points ,

D, E are isogonal conjugates with respect to Lionnefs triangle.

For the radius DEY and the perpendicular from D on BC
are isogonals with respect to the angle BDC. Hence the lines

DEl and EE^ are isogonals with respect to the angle E^E^E.^

whose sides are respectively perpendicular to those of BDC.

310. If Lionnefs triangle (last Jig.")
be moved parallel to itself

until the point E coincides with D, it will in its new position be a

polar reciprocal ofABC with respect to D.

Dem. Since E and D are isogonal conjugates with respect

to the triangle E-^EJE^ the distances of E from the sides are

inversely proportional to the distances of D, and therefore

inversely proportional to AD, BD, CD. Hence the proposition

is proved.

311. The barycentric co-ordinates of D with respect to the

triangle ABC are

l/(cot-4 + cot-4')i l/(cot^ + cot-B')> 1 /(cot (7+ cot C").

(881)
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Dem. When Lionnet's triangle is placed as in 310, the

sides of ABC will be the polars of the vertices of E^E3

with respect to D, and therefore the distances of D from

the sides are proportional to IjEE^ \\EE^ \JEE3 . Hence

the barycentric co-ordinates of D with respect to ABC are

%a\EEi, %l\EE^ bcjEEs. Now, if EEl intersect BC in M,
we have E^M = % a cot A', ME = $ a cotA . Hence

EEl
= a (cot A + cot A') ;

.-. ajEEl
= 1 /(cotA + cot A').

Hence the proposition is proved.

Similarly, the barycentric co-ordinates of D' are

')>
I /(cot

-
cotB'), l/tootC-cotC"). (882)

EXERCISES.

1 . The equation of the circumcircle of the triangle of reference is

sin .7 sin B sin C- +- + -- =0.
CM 02 <*s

Now it is easy to see that the angles A,B,Coi the old triangle of reference

will be the supplements of the angles which the sides of the new triangle

of reference subtend at the centre of reciprocation. Hence, denoting these

angles by ty\, fy, \|/3 , respectively, the result of reciprocation gives the fol-

lowing theorem : Given a focus and a triangle circumscribed to a conic, its

tangential equation is

sunfa . + siniJ/2 . + sin ^3 .
- =0. (883)

A] \2 A3

2. If a polygon of any number of sides be inscribed in a circle, and if

the angles which the sides subtend at any point in the circumference be

denoted by tja, fy, $3, &c., we have
( 117), if ai = 0, 02 = 0, 03 = 0,

&c., be the standard equations of its sides, 2- = 0. Hence, recipro-
01

eating with respect to any point in the circumference, we get the following

theorem : If a polygon of any number of sides circumscribe a parabola, and

if fyi> fy, 'I's, $c-, be the angles subtended at its focus by the sides of the

polygon, AI, Az, As, $c., perpendiculars from the vertices on any tangent,

pi, pz, pa, $c., the distances of the angular points from the focus, then

' = 0. (884)
Ai
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3. In equation (339), if we put sin A, sm.B, sin C for a, b, c, the tan-

gential equation of the circumcircle of the triangle of reference may be

written

sin A v Ai + sin B \/\z + sin C \/A3 = 0.

Hence, by the foregoing substitutions, being given a focus and three tan-

gents, the equation of the conic is

sin ih / + sin fa / + sin J/3 /
= 0.

\*l \#2 \*3
(885)

4. If the focus be one of the Brocard points, viz-, the point whose co-

ordinates are

c a b

ft' ? a'

then the angles fa, fa, fa, which the sides subtend at that point, are the

supplements of the angles C, A, B, respectively. Hence the equation

of the Brocard ellipse, that is the inscribed ellipse whose foci are the

Brocard points, is

= 0. (886)

5. If the angles of a polygon circumscribed to a circle be denoted by

A, B, C, &c., and the perpendiculars from its angular points on any

tangent to the circle by Ai, A2, &c., we have

/cot_M\ m Q

Hence, if a polygon of any number of sides be inscribed in a conic ; and if

#1, #2, #3, &c., be the perpendiculars from one of its foci on the sides, and

tyi, <h, &c - the angles subtended at that focus by the sides, we have

v . /

DBF. i. If through any point be drawn three lines
(I, m, n) parallel to

the vectors AD, BD, CD of a quadrangle ABCD, and A, p, v parallel to

BC, CA, AB, the pencil in involution (l\, #/*, nv) is called the pencil

of the quadrangle.
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DBF. n. Two quadrangles ABCD, A'B'O'D', which are such that the

normal co-ordinates of D with respect to ABC are inversely proportional to

the vectors from D' to the points A', B', C', are said to be metapolar, and

the points D, D' their metapoles.

6. If (l\, mn, /) be the pencil of a quadrangle ABCD, prove that

(\l, urn, vn) is the pencil of a metapolar quadrangle.

7. If two quadrangles be metapolar, they cau be placed so that corre-

sponding triangles will be reciprocal in four different ways.

8. If the points D, D' be isogonal conjugates with respect to the triangle

ABC, and if D\D2D3 be the pedal triangle of D, the quadrangles DD\DZD$,

D'ABC are metapolar.

9. If ABC, A'BC be two triangles on the same base, and if the join of

A, A' meet the circumcircles of ABC, A'BC again in D, D', prove that the

quadrangles D'ABC, DA'BC are metapolar.

10. Place two pencils Imn, A/t> so that they shall be in involution.

11. Being given two pencils (Imn), (\/jn>), to construct the right angles

which correspond in the pencils.

12. Construct the rectangular rays of a pencil associated to a quadrangle.



CHAPTER XIV.

EECENT GEOMETRY.

SECTION I. ON A SYSTEM or THREE FIGURES DIRECTLY SIMILAR.

312. Let A, B, C . . . be a system of points belonging to

a figure Fl ;
on the radii B

vectores drawn from a

fixed centre 0, taking

OA', OB', OC' . . . such Q
that OA'/OA = OB'/

OB

being given lengths, the

points A',B', C', &c., make

a new figure F\, which is

homothetic to F1 with re-

spect to the point 0. Then,

if F\ turn round the point

through any given angle,

denoting by A", B", C" the new positions of the points

A', B', C', and by F2 ,
the figure which they form, F1 and F2

are two figures directly similar, having for doublepoint or centre

of similitude the point 0.

The double operation by means of which FI is transformed

into -Fa is called a rotation. It is said to be around the point 0,

having for its measure the ratio OA : OA".

313. Being given two polygons directly similar, it is required to

find their double point.
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Let AS, A'B' be two homologous sides of the figures,

C their point of intersection.

Through the two triads of points

AA'C, B'BC describe circles

intersecting in 0, is the double

point.

For, evidently, the triangles

OAB, OA'B' are directly similar.

This construction fails when

the homologous sides of the figures are two consecutive sides

BA, AC of a triangle. In this case, upon the lines BA, AC
describe two segments BOA,
AOC, touching AC, AB respec-

tively at A. Then 0, their second

intersection, is the double point,

for it is evident that the triangles

BOA, AOC are directly similar.

Cor. 1. is the focus of a

parabola touching AB, AC at

the points B, C.

Cor. 2. The distances of the

double point from any two homologous points or lines are in

a given ratio.

Cor. 3. If AO be produced to meet the circumcircle of the

triangle ABC again in D, AO equal OD.

Cor. 4. Either Brocard point is the double point of the given

triangle, and of any of an infinite number of directly similar

inscribed triangles.

For, let fi be a Brocard point. Take any point D in BC.

Describe circles about the triangles BJXl, flCD intersecting

the sides BA, AC respectively in the points F, E. Then

the triangle FDE\& directly similar to ABC.
For the angle DFQ, is equal to DBQ = FAto and FBQ, = FDfl.

Hence the triangle BtlA is directly similar to D&F. Similarly,
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the pairs of triangles FlE, ASIC
; EtlD, C&B are directly

similar. Hence the proposition is proved.

THREE SIMILAR T?IGTJRES.

314. NOTATION. Let Flt
Fz ,

F3 be three directly similar

figures, llt 4, 4 three corresponding lengths, ax the angle of ro-

tation of F2 ,
F3 , oa, a3 the angles of rotation of F3 ,

Fl and

FI, Fz respectively, 8^ Sz ,
S3 the double points of F2 ,

F3)

F3 ,
Flt and of F

1}
Fz . We shall also denote by ( . AS} the

distance from the point to the line AB. The triangle SiSzS3

formed by the double points is called the triangle of similitude

of the figures, and its circumcircle their circle of similitude.

In every system of three figures directly similar the triangle

formed ly any three homologous lines is in perspective with the

triangle of similitude, and the locus of the centre ofperspective is

the circle of similitude. (TARRY.)

Dem. Let #1, fl^, a3 be three homologous lines forming the

triangle AiAy,A 3 . Then we have
( 313, Cor. 2)

(#1. %) k (Sz.a3} k (ffa-gQ _ i
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Hence it follows that the lines S^A^ SZAZ , S3A 3 cointersect

in a point L whose distances from the lines X , a^, a3 are propor-

tional to /i, 12 ,
/3 . Again, the triangle A^A ZA3 being formed by

three corresponding lines, its angles are supplements of a1? az ,
a3

respectively. Hence the angles A^LA^ A2LA3 ,
A3LAi are

given, that is, the angles SiLS2 ,
S2LS3 ,

S3LSl are given. Hence

the point L moves on three circles passing through 8\ and $2 >

S2 and S3 ,
S3 and St respectively, that is, it moves on the

circumcircle of the triangle SiS2S3 .

315. In every system of three similar figures there is an infinite

number of triads of concurrent homologous lines ; these turn round
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three fixed points 7i, 72 ,
/3 o/Ae Mrcfe of similitude, and the locus

of their point of concurrence is the circle of similitude. (TAKRY.)

Dem. Let Z be the centre of perspective of the triangle

SiS^Sfr and A^A^A^ formed hy three homologous lines.

Through L draw Z7i, Z/2 ,
Z/3 parallel to the sides of A^A^A^

respectively. These are homologous lines for

(S, . Z/2)/(^ . Z/3 )
= (8l . ,)/(& . 3)

= 4/4, &c.

Again, the point Iz is fixed
;
for the angle SiLI^ is equal to

S^Afr which is given. Hence the arc $i/2 is given, and 72 is

a given point. Similarly, 73 , li are given points.

DEF. /), 72 ,
/3 r<? called the invariable points, and A/2/3 the

invariable triangle.

Cor. 1. The invariable triangle is inversely similar to the

triangle formed by three homologous lines.

For the angle /2/3/i = I^LIi = A zA^A lt &c.

Cor. 2. The invariable points form a system of three corre-

sponding points.

For the angle /2$!/3 = c^, and SJz : $i/3 ::lz : ls .

Cor. 3. The lines joining /i, 72 ,
/3 to any point of the circle

of similitude are corresponding lines of Fl} F^ Fz .

For they pass through three homologous points, and make,

with each other, angles equal to a1} a2 ,
a3 , respectively.

Cor. 4. The triangle formed by any three corresponding

points is in perspective with the invariable triangle and the

locus of the centre of perspective is the circle of similitude.

For the joins of corresponding vertices are corresponding lines

through the invariable points.

Cor. 5. The invariable triangle and the triangle of simili-

tude are in perspective. For we have /2 : 13 : : S^ : SiI3 : :

316. MODULAH QUADRANGLE. Iffrom a point Q we draw three

lines QQn <2<23 , QQa equal to 4, 4, 4> respectively, and parallel



398 Recent Geometry.

to any three homologous lines of F^ F2 ,
F3 ,

the figure QQiQ^Qz is

called the modular quadrangle. (NEUBERG.)
It is evident from the construction that the angles Q^QQ3 ,

QsQQn Q\QQt are respectively equal to alf a2 ,
a3 .

Cor. 1. The figureformed by the point L
(Jiff., 314) and

LI, Z2 ,
Z3 ,

the feet of perpendiculars from it on the sides of

the triangle A V
A ZA 3 is similar to the modular quadrangle.

Because the distances of L from the sides of the triangle

A^A^Az are proportional to lr ,
lz,

13 ,
and the angles Z2ZZ3 ,

Z3ZZ1( ZjZZ2 are respectively equal to alt a?, a3 .

Cor. 2. The pedal triangle MiM2M3 of L with respect to

L^Lz is easily seen to be inversely similar to SiS2S3 . Hence

the pedal triangle of Q with respect to Qi Q2 Qa is inversely similar

to the triangle of similitude.

Cor. 3. The antipedal triangle of Q with respect to QiQ*Q3

is similar to the triangle formed by any three corresponding

lines of F^ F2 ,
F3 .

For the antipedal of L with respect to LiL2L3 is the triangle

A\A%A 3 .

317. If PI, PZ, Pa be a triad of homologous points ofF} ,
F2 ,
F3 ;

/*u ^2 , f* the areas of the triangles Q2QQ3 , Q3 QQi, QiQQ* of the

modular quadrangle. The mean centre ofP} ,
P2 ,

P3 for the system

of multiples /x t , /u^, p.3 is a fixed point. (NEUBEEG.)

Dem. Let R^, H^, JS3 be another triad of homologous points,

divide P^P3 , JR^s in the ratio /j^ : ^ in the points P4 ,
JR

;

draw P4 V, P4V equal and parallel to P2R2 and P3R3 , respec-

tively. Join R-i U, R3 V. Now we have Rz U: R3V : : fi3 : p.z : :

R2Ri : R3 i. Hence the line UV passes through R. Again,

in the modular quadrangle we can suppose QQlt QQy , QQ3 to be

equal and parallel to P\R\, P*Ri, PsRs, respectively. Hence

the triangle P4 7Fis equal in every respect to QQ-.Q.. Hence,

if we produce Q,Q to meet Q^Q3 in Q4 ,
it follows that PiRi is

equal and parallel to QQ4 . Therefore P\Ri and P4-S4 are

parallel, and the lines Pi-P4 , R\Rt, intersect in a point D, such
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that each is divided in D in the ratio QQi :QQi- Hence I) is

the mean centre of the triads of points PI, P2 ,
P3 ; R^ R2 ,

R3

for the multiples /AI, />t2 , ^.

DBF. D is called the DIEECTOE point.

318. Let S'i be the point of Fl which corresponds to Si, con-

sidered as a point in Fz and F3 ;
S'2 the point of F2 ,

which cor-

responds to S2 in F3 and FI ;
and S'3 ,

the point of F3 which

corresponds to S3 in FI and Fz . Then the lines SiS\, Sz^'z, S3 S'3

are concurrent.

In fact D is the mean centre of 8'^ Si, St for the multiples

f-\i P*2., fJ-s-
Therefore D is a point on S^S\, which it divides in

the ratio p-i
: ^ +

//,3 . Similarly, it is a point on $2 <S'2 and S3S'3 .

Or thus By hypothesis the three points S'i, Sr , Si are homo-

logous points. Hence the lines S\Ii, SiI2, SiI3 joining them to

the invariahle points are concurrent. Hence the points S'i, D, Si

(fig., 314) are collinear. Similarly, /S'2 , D, S2 are collinear,

and S' 3 , D, S3 are collinear.

DBF. The points S'i, S'2 ,
S'3 are called the ADJOINT points,

and the triangles S\S2S3 , SiS'zS3 , SiS2S'3 AJINEX triangles.
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319. The annex triangles are directly similar to the modular

triangles.

Dem. The points S',, St1 S3 in F
l correspond to S,, S'2 ,

83

in .F,, and to S,, 5,, S'3 in /;. Hence the triangles S,S'ZS2 ,

SiS38'3 are similar to Q<22Q3 . Therefore the angle $iS2 Z) is

equal to SiS'3 D, and the circumcircle of the triangle S^yS'a

passes through D. Similarly, the circumcircles of the triangles

S'iS2S3) SiS'zS3 passes through D. Let E^ J?z ,
E3 be the cir-

cumcentres of the annex triangles. Then, as they form a triad

of homologous points, the triangles S-iE^E^ S2J23Ei, S3EiEt are

directly similar to the triangles QQtQ3 , QQ3 Qi, QQiQy, but the

lines 5,7), S2D, S3D are perpendicular to EZE3 ,
JE3JSlt

at their middle points. Hence the triangles

DE^Ei are inversely similar to QQ^Qa, QQ3 Qi, QQiQz. There-

fore the triangle E^EZE3 is inversely similar to S'iSaS3 . Hence

S'iS^Sa is directly similar to
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Cor. The lines S^'^ SZS'Z ,
S3S'3 are respectively the doubles

of the altitudes of the triangle E^E^EZ .

For DS\ is bisected by the perpendicular from El on it, and

SiD is bisected by E2E^.

DBF. We shall call the circumcircles of the annex triangles

ANKEX CIRCLES, and the triangle formed ly their centres LIONNEX'S

TEIANGLE. Compare 309, Def., and the circumcircle of

Lionnefs triangle LIONNET'S CIBCLE.

320. The triangle formed by any three homologous points P1}

P2 ,
P3 is orthologique with Lionnefs triangle E-^E-jE^. (NEUBERG-.)

Dem. Let the barycentric co-ordinates of P! with respect

to the triangle S'i82S3 be AI, X2 ,
\3 ,

then the barycentric co-

ordinates of P2 with respect to $i$'2$3 and of P3 with respect to

S&S't are A,, A2 , AS. Again, join &'&, and produce to meet
^2^3 in V. Join U8lt and draw P^P parallel to &'& meeting
178! in P. Then it is easy to see that the barycentric co-

ordinates of P with respect to S&Si are At , A,, A,. Similarly,
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it may be proved that the parallel through Pa to S'ZSZ,
and

through P3 to S'3S3 , pass through the point, whose barycentric

co-ordinates with respect to SiSzS3 are AJ, A2 , A^. Hence the three

parallels are concurrent, but these parallels are perpendicular to

the sides of EiEzE3 . Hence the proposition is proved.

Cor. 1. The figures Flt Fz ,
F3 are projectively related to a

fourth figure F.

For when Pl describes Flt P will describe F
t
which will be

the projection of each of the figures FL ,
Fz ,
F3 .

Cor. 2. The invariable triangle is the reciprocal of LIONNET'S

triangle.

For the perpendiculars from D on the sides of E^EZE3 are the

halves of the lines SiD, SZJ), S3D, respectively, and these are

proportional to the reciprocals of DIi, J)IZ ,
DI3 , respectively.

321. The triangle formed by any three corresponding points is

similar to the pedal triangle of any of these points with respect to

the corresponding Annex triangle.

Dem. Let the perpendicular co-ordinates of P! with respect

to S\SZS3 be #1, yi, stj ;
those of P2 with respect to SiS'A,

#n> yz, *z> an(l f P3 with respect to SiSzS'3 be x3 , y3 ,
23 . Now

from similar triangles we have

&& : P1P : : (S\ . S2S3) : xlt

but && = 2 (^i . EZE3) Cor., 319.

Hence 2 (El . EZE3)
: (S\ . SZS3)

: : P,P : xv .

Similarly, 2 (Sz . E3E,} : (S'z . $,) : : PaP : ya ;

but from similar triangles,

(fft.&SQ-.&.Btffd'.'.+ tft

Hence (Euc. V. xxii.),

2 (JB, . B&) - (8* 83S\) : : P3P : yi .

But since the triangles EiEzE3, 8\SZS3 are similar,

(jEi . EZE3 ~)
: (S\ . SZS3)

: : (EZ .E3EJ : (Sz . S3S\).

Hence PiP : x : : PZP : ylt and similarly as P3P : s1} and the

proposition is proved.
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Cor. The ratios P^P : x^ P2P : y^ P3P : %i are given. Tor

each is equal to the ratio of any side of EiEzE$ to half the

homologous side of S'iS28a . The proposition just proved affords

immediate solution of a large number of propositions. The

following are a few instances :

1. If three homologous points be collinear, their loci are the

annex circles.

For the feet of the perpendiculars from each on the sides of

its annex triangle are collinear.

2. If the Brocard angle of the triangle formed by three homolo-

gous points be given, their loci are SCHOUTE circles of the corre-

sponding Annex triangles.

3. If the area of the triangle formed by three homologous points

be given, the locus of each is a circle.

For the area of the pedal triangle of each point with respect

to its annex triangle is given.

The maximum triangle formed by three homologous points is

Lionnefs triangle E-JE^E^

4. If the angle PZP\P3 of the triangle formed by three homolo-

gous points be given, the locus of PI is a circle passing through the

points Sz . 83 .

5. If the sum of the squares of the sides of the triangle formed

by three homologous points be given, the locus of each is a circle.

In each of the foregoing cases the locus of the point P is an

ellipse.

6. If PI, PZ, PS be homologous points, P\, P'y ,
P'3 ,

their inverses

with respect to the annex circles, the triangles P^P^Ps, P'^P^P'^

are inversely similar. D is their double point, and if P\P\ inter-

sect its Annex circle in thepoints V, V, DV, DV are their double

lines. (M'CAT.)

For if PI, P'i be inverse points with respect to the annex

circle 8\S2SZ ,
their pedal triangles are inversely similar.

Hence P^Pz, P'iP'zP'3 are inversely similar.
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7. The triangle T'i/'a/'s formed by the inverses of the invariable

points with respect to the Annex circles is directly similar to the

triangle formed by any three corresponding lines. (Ibid.)

8. The anticomplementary of I\I'ZI'Z is a triangle (say ABC]
formed by three corresponding lines, and the middle points of its

sides are homologous points of F^ Fz ,
F3 . The perpendiculars to

the sides of ABC at I\, I'z , I's, or at their middle points are con-

current homologous lines. Hence they pass through the invariable

points, and intersect on the circle of similitude. Hence the ortho-

centre of I'J'iI'z is a point on the circle of similitude. (Ibid.)

EXERCISES.*

1 The invariable triangle is orthologique with that formed by any three

corresponding lines.

2. If corresponding circles of F\, Ft, FS be concentric with the annex

circles, circles cutting them orthogonally form a coaxal system, of which

the director point is a limiting point. (M'CAY.)

3. If the figures jFi, Ft, FS be equal, the director point is the circum-

centre of Lionnet's triangle, and the orthocentre of the triangle of simili-

tude.

4. In the same case, the annex triangles are the symetriquea of the

triangle of similitude with respect to its sides.

5. If through any three corresponding points lines be drawn parallel to

the sides of Lionnet's triangle, they form a triangle of constant area.

6-10. If the director point be on the circumference of Lionnet's circle,

then 1. The double points are collinear. 2. The invariable points are

at infinity. 3. The triangle I'lI'^I's coincides with Lionnefs triangle.

4. The adjoint points are the symetriques of D with respect to the tri-

angle ABC, the anticomplementary of Lionnet's triangle. 5. If the line

818283 cut the sides of ABC in angles A', B', C', and 21 be the circum-

radius of ABC, the radii of the annex circles are

-ffcos-4', jRcos-B', JZcosC".

* These Exercises have been selected chiefly from NEUBBRO " Sur les

projections et centra-projections." Bruxelles, 1890.
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11-17. If the points Si, 82, 83 remain fixed, while the director point

D is at infinity in a given direction 8, then 1. The lines through

Si, Sz, 83 parallel to 8 cut the circle of similitude in the invariable points.

2. MI + MZ -f MS = 0. 3. Every line parallel to 8 meets the sides of the

triangle of similitude in three corresponding points. 4. The triangle

formed by three corresponding lines is similar to the triangle of similitude.

s;

5. It is inscribed in the triangle of similitude. 6. The adjoint points

are the intersections of the side of 818283 with the parallels Sili, Szlz,

3/3. 7. The annex triangles reduce to flat triangles

1823. If from any point P of a line d perpendiculars be drawn to the

sides of a fixed triangle ZiZiZ$, their feet mark three homologous rows of

points which may be regarded as making parts of three directly similar

figures Fi, F2, FS, then 1. The feet of perpendiculars from the summits

of Z\ZiZi on the line d are the double points Si, 82, 83 of the system.

2. The triangle Z\ZiZ* is similar to Lionnet's triangle. 3. The invariable

points are at infinity on the perpendiculars of ZiZ^Zz. 4. The director

point D is the point common to perpendiculars from Si, 82, 83 on the sides

of ZiZzZz. 5. If d intersect the circumcircle of ZiZzZz in the points
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F, V, the Simson's lines of F, V with respect to Z\ZiZi pass through D.

6. If d he a diameter of the circumcircle of Z\ZiZz, D will be on its

nine-points circle.

24. If PI, P2 he homologous points of directly similar figures F\, Ft, and

if through any fixed point S a line Sp he drawn equal and parallel to PiPz,

the locus of p is a figure similar to F\, Ft.

25. If PiQiRi, PzQzRz be two triangles directly similar, and if through

any point S, be drawn lines Sp, Sq, Sr, respectively equal, and parallel to

PiPz, QiQt, RiRz', the triangle pqr is similar to the given triangle.

26. Being given Lionnet's triangle of three similar figures, then any

triangle PiPjPa whose summits are three homologous points, is only altered

in position by the change of position of the director point.

27. If PI, PI, Pa be a triad of homologous points of three similar rows,

and if upon a fixed base a triangle similar to PiP*Ps be described, the locus

of the free summit is a circle.

SECTION II. THEOET OF HAEMONTC CHOEDS.

322. If A'B' be a chord of given length inscribed in a circle Z,

S a given point, then if the lines A'S, B'S intersect the circle
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again in AS, a point E^ (called the symmedian point] can be

found, such that the ratio (E. AB}jAB is constant.

SOL. Let AB, A'B' produced meet in P, and intersect in

C, C", the line joining S to the centre O. Through P draw

PS', the polar of S, then E, the harmonic conjugate of with

respect to S, S', is the point required.

Dem. Since the pencils P(8CS'C'}, P(SES'0} are har-

monic,

2188' = 1/SC+ l/SC' = 1/SJT+ 1/SO,

.-. (SE- SC}I(SE. 80} = (SO' -
SO}I(SC' . SO}.

Hence

EO/SC:OC'jSC
f

: : SE S: 0.

Therefore

(E. AB}/(S . AB} :(0. A'B'}I(S . A'B'} : : SE: SO.

But

(S . AB} : (S . A'B'} : : AB : A'B'.

Hence

(E. AB}/AB :(0. A'B'}/A'B' ::SE: SO.

But the three last terms of this proportion are given, therefore

the first is given.
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Cor. 1. If the points A, B be joined to S', and produced to

meet Z again in A", B", these points are the symetriques of

A', B' with respect to S8f
.

Cor. 2. If the chord A'B' take different positions in the

circle, its extremities will divide the circle homographically.
Hence the corresponding positions of A, B will be homographic.
Hence we have the following theorem :

If the extremities of a chord ofa circle divide it homographically,

there is a fixed point in its plane such that its perpendicular dis-

tance from the chord bears a constant ratio to its length.

DEF. The points S, S' are called the centres of inversion.

323. BBOCAED ELLIPSE. Since A'B' is a chord of constant

length, its envelope is a circle concentric with Z. Hence the

envelope of AB is an ellipse, called the Brocard Ellipse ;
its foci

are found as follows :

Let .ZT be the symmedian point, the centre of Z, upon OK
as diameter describe a circle. (This is called the Brocard Circle.')

Draw OJ perpendicular to AB, cutting the Brocard Circle in /.

Join AI, BI, cutting the Brocard Circle in O, O'
;
these are

given points, and are the required foci.
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Dem. Since the ratio (K . AB]/AB is given, the ratio

IJ: AH, therefore the ratio U: JB is given. Hence the angles

JIB, IBJ are given. Hence the angle 0/Q is given. Hence O
is a given point. From O draw QJf perpendicular to AB.

Now, since the triangle SlBM is given in species, and B moves

on a given circle, the point M describes a fixed circle. This

will be the pedal circle of the conic, which is the envelope of

AB. Hence O is a focus. Similarly, O' is a focus.

DEF. O, 12' a/re called the Brocard points of the system, and

either base angle of the isosceles triangle IAB its Brocard angle.

Cor. 1. If the angle which A'B' (fig., 322) subtends at

the centre be denoted by 2a, the distance OK by 8, and the

Brocard angle by w, then

tan2
o) . tan2 a = 1 - 82/^. (888)

Dem. From the proof of 322,

(JT. AB)/AB -.(0. A'B'}/A'B' : : SK: SO.
But

(X.AB)/AB = | tan w, ( . A'B'}/A'B' = % cot a.

Hence
tan o). tan a = SRISO.

Again, since the points 0, K (fig-, 322) are harmonic con-

jugates with respect to S, S', and S, S' are inverse points with

respect to Z, it is easy to see that

= I - &R\ Hence tan2
o> . tan2 a = 1 - S

2 ^.

Cor. 2. S2 = R2
(I

- tan2 a . tan2
o>). (889)

Cor. 3. Since the locus of M is the auxiliary circle of the

Brocard ellipse, the radius of the auxiliary circle is R sin <o,

that is, the transverse axis of the ellipse is 2R sin o>, also the

distance OO' between the foci is equal to 8 sin 2o>, that is,

tan2a . tan2

to)
sin2 2o>.
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Hence the equation of the Brocard ellipse referred to its axes is

a? sin2 CD + y
2 cos2a = & sin4

o>. (890)

Cor. 4. If the lines 01), Ofi' meet the circle Z in the points

V, V, the chordW is equal to the major axis of the ellipse.

324. If be the circumcentre, S, 81 the centres of inversion,

OS: 08
l ::cos(o>- a) : cos (<> + a). (891)

Dem. Since S, Si are the limiting points of the circles Z, X,

the radical axis bisects SSi in (2, but the radical axis is the

inverse of X with respect to Z. Hence OQ =
IP/8, and since

Si is a limiting point QSf = OQ* - 2P. Hence

QSS = &(&- S2)/S
2

.-. QSi = J2 Z Ian a tan o/8.
Hence

OS = ? (1 + tan a tan u>)/8, 08^ = R l

(
1 - tan a tan )/8.

Therefore 08 : OSi : : cos (o>
-

a) : COS(<D + a).

Cor. 1. The angle S&S = 2a. (892)

For, join OO, and produce it to meet the radical axis in L.

Join LS, LSi. Now,

QS^ = R* tan a . tan o>/8
= OQ tan a tan w = QZ tan a.

Again, since the radical axis is the inverse of X with respect
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to Z, we have 0O . OL = & = OS . 08^ Hence the points

S, L, Q, $! are concyclic. Hence the angle S&S - S^S = 2a.

Cor. 2. If the lines S&, Sft' meet the Brocard circle again

in the points F, F', the angle TOY' = 2a.

Cor. 3. The directrix of the Brocard ellipse passes through

the point L.

Cor. 4. The major axis : minor : : OL : LS.

HAKMONIC POLYGONS.

325. If the chord A'JB'
( 322) he the side of a regular polygon

of n sides, AB will he a side of a cyclic polygon of n sides,

having a point K in its plane, such that its distances from

the sides are proportional to the sides, such a polygon is, for

reasons that will appear further on, called a harmonic polygon.

Hence we have the following theorem : If any point S in the

plane of a circle be Joined to the summits of an inscribed regular

polygon, the joining lines will cut the circle again in the summits

of a harmonic polygon.

From 322-324, it is seen that every harmonic polygon

has a symmedian point, a Brocard circle, two Brocard points,

a Brocard ellipse, a Brocard angle and two centres of inversion,

viz. the points S, Slt which are the limiting points of the cir-

cumcircle and Brocard circle.

326. IfAm A l . . . An_i be the summits of a harmonic polygon

of n sides, the chords A-^An.^ . A 2An_z , 8fc. y
are concurrent.

Dem. Let .ZThe the symmedian point. Join AQK, and pro-

duce it to meet the circumcircle in A' . Then, since the perpen-

diculars from JTon the chords A An.i, A Ai are proportional to

the chords, the points Am A' are harmonic conjugates with

respect to An_l} A^ Hence the line A^An-^ passes through the

pole of A A'
, Similarly, A zAn_z passes through the pole of

A A'
,
&c. Hence the proposition is proved.

327. If a, /?, y, Sfc.,
be the equations of the sides of the harmonic

polygon, a, b, c, Sfc., their lengths, then the polar line of I with

respect to the polygon is ^a/a = 0.
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Dem. Through E draw any line cutting the sides of the

polygon in the points RI, It* . . . and on it take a point R, such

that n\KR = IfKBi + IjKRz . . . The locus of R is required.

Let E be taken as origin, then if p, p', p" . . . be the perpen-

diculars from JTou a, ft,y . . . and if KR make an angle 6 with

the axis of z, we have

\IKRi = cos (0
-

a)/j, IIKRZ
= cos (6

-
)//, &c.

Now, denoting KR by p, we have by hypothesis,

Hence
, (x cos a

-
0, that is 2a/p =

;

and since JT is the symmedian point, p, p', p" are proportional

to a, b, c. . . . Hence

2o/ = 0. (893)
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328. The polar of K with respect to the circumcircle is also the

polar ofK with respect to the harmonic polygon.

Dem. Let a be the pole of the chord A A' with respect to

the circle. Then a is a point on ^a/a = 0. For, join JTa, and

if n be even, the sides may be distributed in pairs, such that

K and a are harmonic conjugates with respect to the points in

which each pair are cut by JTa. Hence \JKR1 + \jKRn = 2/Ea,

IjERz + IjKR,^ =
2/-5Ta, &c.

;
and if n be odd, the intercept

made by one of the sides on Ko. is equal to Ka. Hence

2 (1/JOJi)
= n/JTa. Hence a is a point on the line 2a/ = 0.

Similarly, the pole with respect to the circle of the line joining

the point K to each vertex of the polygon is a point on

2a/0 = 0. Hence jSTis the pole of 2a/ = with respect to the

circle.

Cor. 1. The circle is the polar conic of K with respect to

the polygon.

Cor. 2. If a radius vector through K cut the sides of the

polygon as in 327, and a point be taken on it, such that

the locus of R contains the circumcircle as a factor.

It may be proved, as in 327, that the locus of R is 2,a[a
= Q.

This, which is a curve of the (n- 1) degree, contains the circum-

circle as a factor. (See 117.)

329. If through the symmedian point of a harmonic polygon a

parallel be drawn to the tangent at any of its vertices, the intercept

on it between the symmedian point and where it meets either side

through the vertex is constant.

Dem. Let AB be a side of the polygon, AT the tangent,

jff77the parallel, produce AS to meet the circle in A'. Join

A'B, and draw EX perpendicular to AB. Now, we have
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= sin A UK = sin TAB = sin AA'B = ABflR. Hence

= ZKXjAB = tan to
;

/. jE77= 22 tan <>. Hence

constant.

u

Cor. If the polygon be one of n sides, there will be 2n points

corresponding to U
y
and these will be concyclic.

330. If the symmedian lines of a harmonic polygon be divided

in a given ratio in the points A", B" . . .
,
and through these points

parallels be drawn to the tangents at the summits, each parallel

meeting the two sides passing through the corresponding summit,
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all the points of intersection are concyclic, and taken alternately

form the summits of two polygons similar to the original.

Dem. Let the ratio be I : m. Join AO, OK. Draw A"0f

parallel to AO, and A" U' parallel to the tangent at A. Then

we have 0'A"=lR\(l+m\A"U'=mKU\(l + m) = mtsQ.<a/(l + m)

( 329) . But 0' V* = O'A"* + A" U'2 = B?(l* + m* tanz
o>)/(Z + m)

z
.

Hence 0' U' is constant.

Again, if B"V be parallel to the tangent at B, the triangle

O'B"V is in every respect equal to O'A" U'. Hence the angle

ZFO'V is equal to A OB. Hence the points U', V . . . are the

summits of a polygon similar to that formed by the points

A, B It is evident that, proceeding in the opposite

direction from A, we get another harmonic polygon. Hence

the proposition is proved.

If the ratio I : m vary, the point 0' will move along OK, and

to each position of it will correspond a circle intersecting the

sides of the polygon AB C ... in points which form the sum-

mits of two harmonic inscribed polygons. This system of circles

is called the Tucker's Circles of the Polygon.

Cor. 1. If be an angle determined by the relation I tan

= wtano>, the corresponding "Tucker's Circle" intersects the

sides of the polygon at angles equal to (A -
0), (B-6], ( C - 6}

.... respectively.

For tan = m tan o>
/
1 = A" U'l O'A" = tan A" 0' U'. Hence

=A"0'U'. Again, denoting the angles subtended by the

sides AB, BC .... of the polygon at any point of its circum-

circle by A, B . . . .
,
and drawing O'R perpendicular to AB, we

have the angle A" O'R = A"U'A, which is evidently equal

to A. Hence U'O'R = A 0, and the circle whose centre is

0' and radius 0' U' cuts AB at angle equal to A - 0.

Cor. 2. The perpendiculars from the centre of a " Tucker

Circle" on the sides are proportional to cos (A -
0}, cos (B - 0),

&c., and the intercepts they make on the sides to sin (A -
0),
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sin (B -
&} . . . . In the special case, that the polygon reduce

to a triangle, these results will be found important.

Cor. 3. If & be changed to 90 + 0, the perpendiculars are

proportional to sin (A -
6), sin (B -

6). . . .

Cor. 4. If R9 denote the radius of " Tucker's Circle,"

R6
= R sin to/sin (0 + w). (894)

Cor. 5. The centres of similitude of the original polygon

and the two inscribed polygons are the Brocard points of the

polygon.

331. If from the circumcentre of a harmonic polygon perpen-

diculars be drawn to its sides, the intersections with the Brocard

circle are the invariable points of similar figures described on its

sides.

Dem. "LetAB, fig., 323, be one of the sides, the circum-

centre, OcAhe perpendicular intersecting the Brocard circle in /,

/ is one of the invariable points. For the polygon and the

figure formed by the / points are doubly in perspective, the

centre of perspective being the Brocard points : and this is the

property of the invariable points.

332. If through the vertices of a harmonic polygon lines be

drawn making equal angles with the sides, and in the same direc-

tion of rotation, the centre of similitude of the original polygon and

that formed by these lines is a Brocard point of each.

Thus, \iDFE, fig., 313, Cor. 4 (for simplicity we take

triangles, but the proof is general), be the original triangle,

BAG that formed by lines equally inclined to the sides,

then fi is the centre of similitude.

333. Iffigures directly similar be described on the sides of a

harmonic polygon, every system of homologous points lies on the

first pedal of a conic.
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Dem. Let SC~be one of the sides of the polygon, A! a point

of the system which belongs to the figure on 0, /the corre-

sponding invariable point. Now, since the figure formed by the

system of points corresponding to A', and that formed by the

invariable points, are in perspective, and have their centre of

perspective on the Brocard circle of the polygon, if we joinZ4',

cutting the Brocard circle in P, all the lines corresponding to

1A' pass through P. Join A'JB, A'C, and draw /Z, PMperpen-

dicular to A'B. Now, the quadrilateral IBA'C is one of a

system of similar quadrilaterals. Hence the ratio of IL : IA',

and therefore the ratio of PM: PA' will be the same in all.

Again, since BA' and its homologous lines are equally inclined

to the sides of a harmonic polygon, they form the sides of

another harmonic polygon. Hence they envelop a conic (the

Brocard ellipse of the polygon they form). Therefore M and

its homologous points lie on the pedal of an ellipse. Hence A'

and its homologous points lie on the pedal of a similar ellipse.

EXERCISES.

1. If FI, Fy, F3 be three similar polygons, each formed by homologous
lines of a given harmonic polygon. Then, since FI, FZ, FS form a system of

three similar figures, they have three invariable points, and since they are

harmonic polygons, each has a symmedian point ; prove that the latter

points coincide with the former.

2E
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2. Prove that the centres of similitude of figures directly similar described

on the consecutive sides of a harmonic polygon, form the summits of ano-

ther harmonic polygon. (TARKY.)

3. If AA', SB', CO' be homologous segments of three similar figures,

whose extremities A, B', B, C', C, A' are concyclic, prove that the Brianchon

point of the hexagon formed by the tangents at these points is the sym-
median point of the three chords.

4. In the same case, the feet of the perpendiculars from the circumcentre

on the Brianchon chords are the double points of the three similar figures.

5. In every system of three similar figures, F\, Ft, F3 ,
there exists an

infinite number of homologous segments, AA', BB', CC', whose extremi-

ties are concyclic, and the locus of the circumcentre of the extremities is

the circle of similitude of Fi ,Ft, F3 .

6. In the same case the envelopes of the segments AA', BB', CO' are

parabolae, whose foci are collinear, and whose directrices are concurrent.

7. In every system of three similar figures there exists an infinite number

of triads of corresponding circles which have the same radical axis.

8. Prove that the envelope of the radical axis (in Ex. 7) is a parabola

whose focus is the point common to the directrices in Ex. 6, and whose

directrix is the line of collinearity of the foci in Ex. 6.

SECTION III. THE TEIANSLE.

334. Triangles
'

being particular cases of harmonic polygons,

their geometry may be inferred from that of the polygon, but,

on account of its great importance, we give a separate discussion.

The parallels to the sides of a triangle through its symmedian

point meet the sides in six concyclic points. (LEMOINE.)

Dem. Let the parallels be DE', EF', FD'
; join ED', DF1

,

FE'. Now, since AFKE' is a parallelogram, .^JfTbisects FE'.

Hence, FE' is antiparallel to BC\ similarly, DF' is antiparallel

to AC. Therefore the angles AFJE', BF'D are equal, and

E'F= F'L. In like manner E'F = VE. Again, if be the

circumcentre, OA is perpendicular to E'F. Hence the perpen-

dicular to FE' at its middle point bisects OK, and it is easy to
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see that the middle point of OUT is equally distant from the six

points, FE'EiyDF'. Hence the proposition is proved.

A.

DEF. The circle through the pointsDF' . . . is called the LEMOINE

CIRCLE, and the hexagon of which they are the summits, the

LEMOINE HEXAGON of the triangle.

Cor. 1. If lines through the angles of a triangle ABC,
and through a Brocard point, meet the circumcircle again in

A', ', C', the figure AB'CA'BC' is a Lemoine hexagon.

Cor. 2. If a triangle A lB1 Cl be homothetic with ABC, the

symmedian point ofAB C leing the homothetic centre, and if the

sides of A^BiCi, produced if necessary, meet those of ABC in the

points D, E'
; E, F'

; F, D1

. These six points are coneydie.

From the hypothesis it is evident that the lines AK, BK, CS
bisect FE', DF', ED1

. Hence, as in 334, the six points are

concyclic.

DEF. The circles got, as in this Cor., when the triangle A 1BV C1

varies, are called the TUCKER'S CIRCLES of the triangle ABC.
2 E 2
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THE BROCARD ELLIPSE.

335. To find the trilinear equation of the Brocard Ellipse.

Let 8 be the centre of inversion, A'B'C' the equilateral

triangle of whose summits the points A, B, C are the inverses,

jy the middle point of A'C'. Join SI? intersecting AC in J).

Then ( 323) D is the point of contact of AC with the Brocard

Ellipse. Now, in the triangle SA'C', AC is antiparallel to

A'C', and S& is the median of SA'C'. Hence, SD is the

symmedian of SAC .'. AD \DC\\ SA* : SC2
. Again, from

the pairs of similar triangles, SAB, SB'A, SCB, SB'C' we
have SA: AB : : SB' : B'A'

;
SC : CB : : SB' : B'C', but

B'A' = B'C'. Hence SA : AB : : SC : CB. Therefore AB* :

B&'.'.AD-.DC. Hence (D . AB)jAB = (D . BC)/BC.
Therefore, if a, ft, y be the equations of the sides of the tri-

angle ABC, and a, b, c their lengths, the equation of BD is

yjc
-
a/a = 0. Hence the equation of the Brocard ellipse is

/a + \/fljb +\/ylc = 0. (895)
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Cor. 1. The reciprocal of the Brocard ellipse with respect to

the conic a2 + (B
2 + y

2 = is Ifaa + Ijbft + l/cy
= 0, which we

shall see is the Steiner ellipse.

Cor. 2. The directrices of the Brocard ellipse are

sin cos C . a + sin C cos A . fi + sin A . cos . y = 0, (896)

cos J? sin C . a + cos C . sinA . ft + cosA sin JB . y = 0. (897)

336. To find the equation of the Tucker's Circles.

From the hypothesis, it is evident that the equations of the

sides of the homothetic triangle ( 334, Cor. 2) A^B^C^ are of

the forms

a - Jca = 0, /?
- Jcl = 0, y - Tec = 0.

Hence afiy -(a- Jca) ((3
-

Jcl} (y
-

Jcc]
= 0,

or (a(3y+lya + caft}-Jc(aby + lca + ca{3) + kzabc = ^ (898)

is the required equation.

Cor. The envelope of Tucker's Circle is the Brocard Ellipse.

For the discriminant with respect to Jc of the equation (898)

is an equation of which v/a/a + \/p/b + \/yjc = is the norm.

337. Let figures directly similar F1}
F2 ,
F3 , be described on

the sides EC, CA, AB of the triangle ABC, and 8^ be the

double point of F2 ,
F3 S2 ofF3 ,

F1 ;
and S3 ofFlt Fz . Then, since

ABC is a triangle formed by three corresponding lines, and

8^83 the triangle of similitude, ABC and SiS2S3 are ( 315)
in perspective. The centre of perspective K is such that its

distances from the sides of ABC are proportional to correspond-

ing lines of Flf F2 ,
F3 ,

and therefore proportional to the sides

of ABC. Hence it is the symmedian point, and from the

demonstration of 315 we see that the parallels to the sides of

ABC, drawn through Kt
meet the circle of similitude 8^83

in the invariable points Ii, /2 ,
I3 .
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Observation. The special case of three similar figures here

considered being that which was first studied, the circle of

similitude, the invariable triangle, and the triangle of similitude

are named, respectively, The JBrocard Circle, First Brocard

Triangle, and Second JBrocard Triangle, after M. H. Brocard,

who first investigated their properties.

Cor. 1. The invariable triangle /i/2/3 is triply in perspective

with ABC.

For, since F^, Fz,
F3 are described on the sides of ABC,

, C, A are homologous points of these figures. Hence the

lines Eli, CIy ,
AI3 ( 315) are concurrent, and meet on the

circle of similitude. Similarly, C7i, AIZ ,
BI3 meet on the

circle of similitude. Again, since the Lemoine circle ( 334)
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and the Brocard circle are concentric, and the line JTTi inter-

sects them, the intercept F'1^ = KE. Hence the lines AI^ AK
are isotomic conjugates with respect to BC. Similarly, BI^ BK
are isotomic conjugates with respect to CA, and CI3 ,

CJT with

respect to AB. Hence AIlt
BT2 ,

CI3 are concurrent.

Cor. 2. The two first centres of perspective are the Brocard

points of ABC.
Cor. 3. The barycentric co-ordinates of the three centres of

perspective are

L 1 i. I i I. i. 1 L (899)
i2 '

c
2 '

a2 '

c
2 '

a2 ' V a*' J2'
c2

^ ;

Cor. 4. The centre of perspective of the triangle formed by

any three corresponding lines of Flt F^ F3 ,
and Brocard's second

triangle, is the symmedian point of the former.

SECTION IV.

338. Besides the Brocard circle and ellipse, Lemoine's and

Tucker's circles, &c., other circles and conies have come into

prominence in connexion with recent Geometry. We shall in

this section give some account of the most interesting of these.

NETTBEBG'S CIRCLES.

Given the base BC of a triangle AB C and its Brocard angle,

to find the locus of the vertex.

Let x', y', z' be the perpendiculars from the symmedian point

on the sides. Then tan co = 2a//
=

2y'jb
= 2z' \o

= 4Sj(a? + bz + c
2
),

where S denotes the area of the triangle ;
.'. cot<o =(a

2+ bz + c
2

)/4/S.

Now, let A1 be the middle point of the base, and taking A^C
and the perpendicular through AI as axes, if #, y be the

co-ordinates of A, we get a2 + 2 + cz = 2#2 + 2y
2 + 3a2

/2 and

48 = 2ay. Hence

a;2 4 f - ay cot w + 302

/4
= (900)

is the locus required. It is called the Neulerg circle of the

triangle, from the name of the distinguished Geometer who first
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showed its importance. "We shall denote its centre by Na . In
the same manner, taking the sides CA, AS, as the common
bases of equi-Brocardian triangles, we get two other Neuberg
circles Nt ,

JVC , respectively.

Cor. 1. Tangents from B or C to the circle JV], are equal
to

Cor. 2. The equation of Na in barycentric co-ordinates is

'
(P + y)(a + ft + y)

-Wy + **y + c2a
)
= -

(90 1 )

For in the general equation (/a 4 //? + wy)(a + ^ + y)
-

(a
2

/?y

+ iz

ya + c'a/?)
=

0, /, ,
n are equal to the powers of the

summits of the triangle with respect to the circle.

Cor. 3. The angle which BC subtends at the point Na is

equal to 2w.

For the co-ordinates of Na are 0, coto), and A lC=a.
Hence tan A^NaC = tan to.
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Cor. 4. If AiA meet the Brocard circle again in A', the tri-

angles ABC, A'JSC are median reciprocals, or the sides of one are

proportional to the medians of the other.

For, let the line AA l meet the circumcircle again in A z ,

and make AG = A^. Join A^B, BG, GC, CA 2 . Then
A'A l . AA, =

3a?/4
= 33A l .A,C = 3AA, . A^ = 3AAl: GA^

Hence A'A^ = 3GA l ;
.*. G is the centroid of the triangle A'BC.

Again, the angle ABC = GA 2 C = AZGB, an&ACB= GA 2B.

Hence ABC is similar to A 2GB, that is to a triangle whose

sides are respectively two-thirds of the medians of A'BC.

Hence the proposition is proved.

Cor. 5. If be the circumcentre ONal($ a)
= cot B + cot C.

For ONn = A lNa -A l O t
and ONa/(%a) = cotw -cot A.

Cor. 6. ONa/a + ONb/b + ONJc = cot co. (902)

Cor. 7. ONa . ONb . ONC
= R\ (903)

339. If the lines joining the highest and the lowest points Ja ,
J'a

A C

of the Neulerg circle Na to either extremity C of the base cut the
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circle again in the points T, Tf

,
then the lines BT, BT' joining

these points to the other extremity are tangents.

Dem. We have JaC.CT = OB2

;
.: JaC : CB:: CB : GT.

Hence the triangles Ja CB, BCT are similar, but JaCB is

isosceles
;

.. BCT is isosceles. Hence BT is a tangent.

Similarly, BT' is a tangent.

Remark. The angles of a triangle equi-Brocardian with -4.5(7

\aryfrom TBC, which is a minimum, to TBC, which is a

maximum. The former is called the first Steiner angle, and the

latter the second Steiner angle of the triangle. "We shall denote

them by 2 V
lt

2 F2 respectively. To determine these angles we

have BT^t a, BNa = ^a cosec o>. Hence sin BNtt
T = 2 sinw.

Again, BNaT = BN^ + A lNaT = BNaA, + TBC = o> + 2^.
Hence sin (u + 2 F

t)
= 2 sin <o. Similarly, sin (w + 2 F2)

= 2 sin o>.

Therefore Vlt Fz are the values of V in the equation

sin (w + 2 F) = 2 sin to. (904)

340. If upon the sides of a triangle ABC le described three

triangles directly similar

BCAi, CAS
lt ABC,, such

that AA
l} JBi, CCi are paral-

lel, the loci of AI, BH Ci are

Neuberg*s circles.

Taking BC and a perpendi-

cular to it atB as axes. Then,
from the hypothesis, the angles

CBAi, ACBi are equal, de-

noting each by 6, and JBA lt

CBV by p, p' respectively, the

co-ordinates of AI are

p cos 0, p sin 0,

and of 2?!,

a-p'coB(C-e), p'dn(C-O).



Recent Geometry. 427

Hence the equations of AA lt BBl are, respectively,

(p sin - c sin .5) x
-
(p cos O-ccostyy + pc sin (B-6} =

0,

Then, forming the condition of parallelism, putting p'
=

bp/a,

and reducing, we get

& + y
% ax - ay cot o> + a2 =

;

which, referred to the middle of BC as origin, is the Neuberg
circle

xz + y* - ay cot to + 302
/4 = 0.

Cor. 1. If Ga ,
Gb ,

Gc be the centroids of the triangles B CAi,

CAB
1}
ABC

1} these points are collinear, and the locus of each

is a circle.

For if G be the centroid of ABC, it is evident that GGa

is parallel to AA 1} GGb to BB^ and GGC to CCl \
but AA,

BB^, CCi are parallel ;
therefore the points G, Ga ,

Gb ,
Gc are

collinear.

Again, taking the middle point of BC as origin, the co-ordi-

nates of Ga are respectively one-third of those of A^. Hence

the locus of Ga is

The circles which are the loci of the points Ga ,
Gb ,

Gc are called

Ml

Cay's circles, after Mr. M'Cay, P.T.C.D., who published, in

the Transactions of the Royal Irish Academy, Vol. XXVIII.,

pp. 453-470, a full discussion of their properties.

Cor. 2. M'Cay's circles are special cases of the annex circles

( 319), viz. when the figures .F
l} F2 ,

F3 are described on the

sides of a triangle.

Cor. 3. The vertices of Brocard's first triangle are respec-

tively the polars of the sides of the triangle ABC.

Cor. 4. M'Cay's circle a? + y
z - $ay cot CD + a2

/12 = is the

inverse of the circle Na with respect to the circle on BC as

diameter.
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ISOGONAI, TRANSFORMATION.

341. It has been seen ( 47), that the points a/3y, a'1

/?'
1

-/-
1

are isogonal conjugates. Now, if the former point describe any
curve P, the latter will describe a curve Q, called the isogonal

transformation of P. Thus the isogonal transformation of any
line is a circumconic of the triangle of reference. For if the

line be la + mfi + ny = 0, its transformation is I/a + m/(3 + n/y = 0.

Conversely. The isogonal transformation of any circumconic

of the triangle of reference is a right line. In particular, the

transformation of the circumcircle is the line at infinity.

342. The isogonal transformation of any line cutting the circum-

circle of the triangle is a hyperbola whose asymptotic angle is equal

to the angle of intersection of the line and circle.

Dem. Let ABC be the triangle of reference, and let the line

cut the circle in the points D, E; join AD, AE, then the

isogonal conjugates of D, E are the points at infinity on the

symetriques of AD, AE with respect to the bisector of the

angle BA C. Hence the curve is a hyperbola whose asymptotes

are parallel to the symetriques of AD, AE; but the angle be-

tween the symetriques of AD, AE is equal to DAE, and there-

fore equal to the angle of intersection of DE with the circle.

Cor. 1. The transformation of any diameter of the circum-

circle is an equilateral hyperbola. Hence, to find the equation

of an equilateral hyperbola circumscribing the triangle of refer-

ence, and passing through any point P, we find the equation of

the diameter of the circle which passes through the isogonal

conjugate of P, and transform. Thus, the equilateral hyperbola

which circumscribes the triangle of reference, and passes through

its incentre is

(cos-B-cosC')/a + (cos (7-cos^)//3 + (cos-4-cos.B)/y = 0. (906)

The centre of this hyperbola is the point of contact of the nine-

points circle with the incircle of the triangle. Corresponding

properties hold for the hyperbolae through the excentres.
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Cor. 2. The isogonal transformation of any tangent to the

circumcircle is a parabola.

Cor. 3. The transformation of any line which does not meet

the circumcircle in real points is an ellipse.

Cor. 4. The transformation of all lines equally distant from

the centre are similar conies.

Cor. 5. If a conic and a line be isogonal conjugates, their

poles, with respect to the triangle, are isogonal conjugates.

For, let the conic and line be Ifiy + mya + a/3
=

0, and

la + m/3 + ny =
0, their poles are I, m, n, l/l, l/m, \\n.

NEUBEBG'S HYPERBOLA.

343. The isogonal transformation of the directrices of the

Brocard Ellipse, 335, Cor. 2, are

cos E sin Cja + cos C sin A/ft + cos A sin Bjy = 0, (907)

sinB cos (7/o + sin (7 cos Aj(3 + sin A cos Bjy = 0. (908)

I have named these conies after M . Neuberg, who first studied

their properties. I reproduce here his investigation from

Mathests, tome vi., pp. 5-7.

" If from a point P perpendiculars be drawn to the sides of a

triangle ABC, and produced so that

the perpendicular on a meets a in A
lt b in Az ,

c in A3 ,

,, I meets I in B
1}

c in _52,
a in 3 ,

,, c meets c in (7i, a in Cz ,
b in (73 .

Then, 7\, T2 ,
T3 denoting the areas of. the triangles A^B^C^

AZBZ C2 ,
A 3B3 C3 , respectively. The loci of P, when the triangles

Ttt T3 vanish, are the hyperbolae" (907), (908).
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A -

Dem. T2
= sum of the triangles PA2B2 ,

PB2CZy PC2A 2

= (PA* . PB2 sin C + PB2 . PC2 sin A + PC2 . PA2 sin B)
= % [j3y sin Cy(cos C cos A} + ya sin A/(coaA cos B}

+ a/? sin -B/(cos 5 cos C} }

=
{ /?y cos B sin (7 + ya cos (7 sin A

+ a/5 cos ^4 sin.Z?}/(2 cos A cos-B cos C).

Hence the locus of P when the points A2 ,
B2 ,

C2 are collinear is

the hyperbola

/?y cos B sin C+ ya cos C sin A + a/3 cos A sin .Z? = 0.

Similarly, the locus of points for which A3 ,
B3 ,

C3 are collinear

is /3y sin B cos C' + ya sin f cos A + a/5 sin ^4 cos J9 = 0.

These hyperbolae have been named Simson's Conies by M. Vigarie.

It would be difficult to conjecture a reason for this nomenclature.



Recent Geometry. 431

"Whatever it may be, there would be a stronger for calling the

circumcircle the Simson Circle, and no one, I presume, would

think of doing so. The name I have given has the merit of

honouring a mathematician who has done much to advance

recent Geometry.

Cor. 1. The locus of points for which T2 = Ta is

fty sin (B - 0} + ya sin
(
C- A] + aft sin (A-B} = 0. (909)

This is Kiepert's Hyperbola.

Cor. 2. Tt : T2 + T3 in a constant ratio.

Cor. 3. The poles with respect to the triangle of reference

of Neuberg's hyperbolae, Kiepert's hyperbola and circumcircle

are collinear, and their line of collinearity is parallel to

a cos A + ft cos B + y cos C = 0.

EUHBMANN'S CIRCLES.

344. DBF. If ABC be the fundamental triangle, H the

orthocentre, JV, JV"a ,
JVd ,
Ne the NageVs points. The circles whose

diameters are UN, SNa,
HNb ,

HNC are called JFuhrmann's

Circles of the triangle. They will be denoted respectively by
F F Fi F*

1
*

<
-*-

b)
* c'

If through -ZV, NA Q be drawn parallel to JBC, meeting the

perpendicular fromA on BC inAQ . Then, evidently, AA = 2rt

but AH'= 2R cos A. Hence AH . AA = 4Hr cos A, or the

power of A with respect to F is 4Rr cos A. Hence the equa-

tion of F in barycentric co-ordinates is

4r (a + /8 + y) (a cosA + ft cos B + y cos <7)

-
(a

z

/3y + bz

ya + c
2^) = 0. (910)

Similarly, the equations of F
tt ,
Fb ,
Fc are

4Rra (a + ft + y) ()3 cos B + y cos C - a cos A)
-
(a?fiy + b*ya + C

2

aj3)
=

0, (911)

4JRrb (a + ft + y) (y cos C + a cosA -
ft cos

}

-
(a

z
fty + b

2

ya + c*aft)
=

0, (912)

a + ft + y}(a.cosA + ftcos-y cos C)
-

(a*fty + Vya + C
2

aft)
= 0. (913)
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Cor. 1. If on the altitudes AHa ,
BITb ,

CHe,
of the triangle

ABC, segments AAW BB ,
CC be cut off each equal to 2r,

the triangle A B C is inscribed in F, and is inversely similar

The first part is evident from the foregoing demonstration;

the second is proved thus : NAm NBU are parallel, respectively,
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to EC, CA. The angle A N is equal to BCA. Hence

AoCoBs is equal to BCA. Hence, &c.

Cor. 2. If on AHa ,
BHb ,

CH we cut off AA a = - 2r
,

BBa = 2ra , (7(7,,
= 2ra ,

the triangle AaBaCa is inscribed in

the circle FaJ and is inversely similar to ABC.

345. JfAi, At ; BI, Bt ;
Clt C2 be the pairs of points where

the internal and external bisectors of the angles A, B, C meet the

circumcircle, and if A'ly A'2 be the symetriques of AI, A2 with

respect to BC
\ B\, B'z ofB^ BI with respect to CA, and C\, C"a

of Ci, C2 with respect to AB, then the triangle A\B\ C\ is in-

scribed in F, A\B'i. C\ inFa , A\Bf^C^ in Fb,
and A'ZB'*C\ in Fc.

Dem. Let A 1

, B', C' be the middle points of the sides of

ABC. Now, A2A\ = A2A' - A'A\ = AH. Hence HA\ is

parallel to AA t . Again, let /be the incentre otABC, and since

N is its Nagel's point it is the incentre of its anticomplemen-

tary triangle. HenceAW is parallel to IA', and equal to 1IA'.

Hence NA' = A'n, and by hypothesis A\A' = A'A^ Hence

A\N is parallel to AA lt and it has been proved that HA\ is

parallel to AA 2 ,
but the angle A^AAi is right, therefore the

angle UA\N is right, and the point A\ is on the circle F.

Hence the proposition is proved.

Cor. 1. The triangles A\B\C\, A\B'2 C'2 , A'^.C'^
A'zB'tC\ are each inversely similar to ABC.

Cor. 2. The triangles A<>B C
, A\B\C\ are in perspective.

From / let fall a perpendicular Ift on AC. Then AI: 1(3

: : BA l : A^A', but 1/3
=

r, and BA^ = IA. Hence AI : IA l

: : 2r : ZA^A' : : AA : AA\. Hence the triangles AA^L,

A^A\I are similar, therefore the points AQ , I, A\ are collinear.

Similarly B , I, B\ are collinear, and f
, /, C\. Hence the

triangles A B C
, A\B\ C\ are in perspective.

It may be proved in like manner that AaBaCa and A\B't C'z

are in perspective.

Cor. 3. /is the incentre of the triangle ^ff (7
,
and the

orthocentre of A'iJ3'iC\. From the similar triangles AJA
,

Si
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AJA\ we have AD : IA? : : AI . IA l : AJ . IA\, that is,

AP : IA : : power of / with respect to circumcircle of ABC
: power of I with respect to F. In like manner BP : IB *

:

power of / with respect to circumcircle of ABC : power of 1

with respect to F. Hence it follows that AI: BI: CI: : A<J:

BQ! : CQ!. Hence, since / is the incentre of AB C, it is the

incentre of the similar triangle A BQC ,
and therefore the ortho-

centre of A\B\ C\.

Cor. 4. /is the double point of the inversely similar figures

ABC, AB C .

Cor. 5. Properties corresponding to those of Cars. 3, 4 hold

for the excentres /, Ib ,
Ic with respect to the triangles AaBaCa ,

346. Ifl'a ,
rb,

I'e be the symttriques of Ia ,
Ib,

Ie with respect

to BC, CA, AB, respectively, the circumcircles of the triangles

BCI'a ,
CAI'b ,

ABI'e, and the lines AI'a ,
BI'b,

CI'c pasa through

a point R.

Dem. The circumcircles of the triangles BCIa ,
CAIb , ABIC

pass through a common point /. Hence their symetriques the

circumcircles of the triangles BCI'a ,
CAI'b ,

ABI'C pass through

a common point R, the twin point of /with respect to the triangle

ABC.

Again, from the cyclic quadrilaterals ABRI'e ,
BCRI'a it is

easy to see that RA coincides in direction with RI'a . Hence

AI'a passes through R.

Cor. 1. The circumcentres of the triangles BCI'a , CAI\
ABI'e are the points A\, B\, C\.

Cor. 2. The sides of the triangle A\B\C\ hisect perpendi-

cularly AR, BR, CR.

Cor. 3. The middle point of IR is the point of contact of the

nine-points circle ofABC with its incircle, and the common tangent

at this point coincides with the axis ofperspective of the triangle*

AJ&, A\B\C\.
Let Ua ,

Ub ,
Uc be the points of intersection of the correspond-
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ing sides of the triangles. Then 7 being the orthocentre of the

triangles A^B-^ C^ A\B\ C\, B Cl bisects IA perpendicularly, and

B\ C\ is perpendicular to IA and to AR
(
Cor. 2) at their middle

points. Hence Ua ,
their point of intersection, is the centre of

the circle passing through the four points A, /, A0) It, and is

on the perpendicular to IR at its middle point Q. Similarly

this perpendicular passes through Ub and TTC . Again, the figure

AIA R is a cyclic trapezium ;
therefore IR = AA = 2r, IQ = r,

and Q is a point on incircle. But since / andR are twin points,

the equilateral hyperbola which^passes through the points A, B,

C, /also passes through R, and /and R are the extremities of a

diameter. Hence the middle point Q, of IR is the centre, and

therefore is a point on the nine-points circle of ABC. Con-

sequently, Q is the point of contact of the nine-points circle of

ABC with its incircle, and the line UaUbUc is the common

tangent. The equation of the hyperbola ABCIR is given,

342, Cor. 1.

Cor. 4. The lines A^A\, B B\, C C't meet the sides BC, CA,
AB ofABC in three points situated on the common tangent of in-

circle and nine-points circle.

Dem. Let Q, be the middle point of IR, and draw la perpen-

dicular to B C. Now, in the cyclic quadrilateral RAIA ,
since

AR, IA are parallel, the angle RIA = AA I= A^Ia. That

is, if Va be the point of intersection of A A\ with BC, the

angle QIFa = aIVa ,
and QI = r = la. Hence YaQI = Vaal

= right angle. Therefore Va is on the tangent at Q to the

incircle.

EXERCISES.

1. The radical axes of the circumcircle and the circles F, Fa , -Fj, Fe form

a standard quadrilateral.

2. The equations of HA'\, HB'\, HC'\ in perpendicular co-ordinates are

b cos B . j8 + c cos C . y - (b + c) cos A . a = 0, &c. (914)

This is the radical axis of F and Fa .

3. The orthologique centre of the triangle A\B\G\ with respect to

A'iB'iC'i is a point S on the circumcircle of ABC, and the points 0, N, S

are collinear.

2 F 2
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4. The orthologique centre of ABC with respect to AoBoCo is a point T
on the circle ABC diametrically opposite to S.

5. The lines AS, BS, OS are parallel to the sides of A B C .

6. The co-ordinates of S with respect to ABGaue (4-e)-
1

, (c-a)-', (a- b)-
1
.

7. The axis of perspective of ABC, AoB C is perpendicular to HT.

8. The double lines of the inversely similar figures ABC, A B C meet AS,

BH, CH, in points (Ka ,
Xb,

Xc), (X'a , X'i, X '), such that AXa=BX6 = CXe

= S-S, AX'a = BX'b = CX'e = -R + , where S = radius of F.

9. If A\ he joined to the centre of the nine-points circle, and produced

to meet the altitude AH in Z, then AZ = JZ.

10. The barycentric co-ordinates of Q with respect to A'B'C' are aj(b-e) t

bl(e
-

a), el(a
-

b) ;
and the equation of F Fj is a (b

-
c)

2 + j8 (c-a)
2 + 7 (a

-
b)*

= o. (DE LONOCUAMPS).

THE OETHOCENTKOIDAL CIRCLE.

347. DBF. The circle whose diameter is the join of the ortho-

centre Hand centroid G of a triangle ABC is called its orthocen-

troidal circle.
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Its equation is easily found. For, substituting the co-ordi-

nates of G and H for
a'fi'y', a"/3"y" in equation (181), we get

a2 sin 2A + /3
2 sin 2B + f sin 20

-
(aft sin C + /8y sin A + ya sin B] = 0, (915)

or, denoting the nine-points circle of ABC by JV, and its circum-

circle by 8, the equation of its orthocentroidal circle is

y+S = 0. (916)

348. The six points in which the orthocentroidal circle meets the

altitudes and the medians of the triangleABCform the summits of

a harmonic hexagon.

Dem. Let the points in which the symmedians of ABC meet

its circumcircle be AI, BI, Cl ;
and the points in which the

orthocentroidal circle meets the altitudes and medians of ABC
be the triads of points (a, b, 0) ; (a1} bi, c^, respectively. Then

taking any two summits of the hexagon which they form, such

as !, b, the angle a^Jlb subtended by the chord a^b at the point

H of the orthocentroidal circle is easily seen to be equal to

the angle which the corresponding summits of the hexagon

A^BQABtC subtends at A. Hence the hexagon a^c^abic,

AiBQAB^C are similar, but the latter hexagon is harmonic.

Hence the former is harmonic, and since they have different

orientations they are inversely similar.

Cor. 1. The triangles abc, ABC are inversely similar, and

also the triangles &$&, A^B^C^

Gor. 2. The lines aa^ bbl} cct are the symmedians of the

triangles abc, a^biCi.

349. If ha , hb,
hc be the intersections of corresponding sides of

ABC, and its orthique triangle HaHbHc the lines Ha^ Hb^ Hci

pass, respectively, through ha,
hb ,

hc .

Dem. Consider the circumcircle of the triangle AJff^Ht,

the orthocentroidal circle JV+ S, and the nine-points circle N.

Now, since N+ S, N and 8 are coaxal, the radical axis of
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N and 8 is the radical axis of N+ 8 and JW. Therefore the

radical axis of JV+ 8 and ^Vis hahbhe . Again, the radical axis

of the circle AHJ1,., and N+ 8 is the line a^H, and the

radical axis of AHbHe and JVis the line H^H,. ;
but these three

radical axes are concurrent, therefore a^H passes through ha .

Otherwise : The line haH, the polar of A with respect to the

circle CBHeHb ,
is perpendicular to the diameter AA'.

350. The points alt blt cl are the symetriques of A^Bl Ci with

respect to the sides of the triangle ABC.

Dem. Join A'Hb . Then, since BHbC is a right-angled tri-

angle and EC is bisected in A', A'B = A'Hb . Hence the angle

BHjA' = A'BHb
= HAHb . Therefore A'Hb is a tangent

to the circle through the cyclic points HoiH^A. Hence

AA' . alA' = A'H? = A'C*. Again, let AA' meet the cir-

cumcircle in A". Join A^a^ A^A". Now, AA' . A'A" =A C".

Hence A'A" = a^A'. Therefore the three lines A'a^ A'A lt

A'A" are equal to one another. Hence the angle a^A^ A" is

right, and, since A^A" is parallel to BC, alA l is perpendicular

to BC, and is evidently bisected by it/

Cor. The Appolonian circle of the triangle which divides BC
passes through Oi ;

for since AA' . a^A' = A'B*, the triangles

AA'B, BA'a^ are similar. Hence AB : a^B : : AA' : A'B
;

similarly, AC'.a^C:: AA' : A'C\ v AB : AC : : alB : a^C.

And the proposition is proved.

351. The symmedian points of thefigures a^ab^, A iBCiAB1 C

coincide, andform the double point of these figures.

Dem. Since alA is perpendicular to BC it is parallel to Aa.

Hence AAi and aa^ which are corresponding lines, divide each

other proportionally. Therefore their point of intersection is

the double point of these figures. Similarly, the intersection

of BBi, bbi ;
and also the intersection of CC^ cc^ is the double

point. Hence the three pairs of lines AA^ aal ;
BBlt bbi ;

CCi, MI have a common point of intersection, which is, there-

fore, the symmedian point of each hexagon.
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352. If M, N be the extremities of the diameter HG of the

circumcircle ABC, the double lines 8, 8' of the inversely similar

figures a^c^ab^, A^BC^AB^C divide the altitudes of the triangle

ABC, in the ratio MN: UN, MN: MH, respectively.

Dem. Since K is the double point, the angle AKa, BKb,
CJ?c have the same bisectors. These

( 206) are the double

lines 8, 8'. Let S, 8' be the points where they cut AH. Then

we have, R being the circumradius, AS : Sa : : AS' : aS' : : 2R :

GH.
Since Aa = %AHa . These proportions can be transformed

into the following :

AS:Sffa ::2R:R + %GH : : MN: HN
AS' : S'Ha::2R:R-%GH:: MN: MH.

Cor. The double lines 8, 8' are at right angles to each other.

BBOCAED'S PABABOL.E.

353. If two isogonal lines ft
-

Jcy
= 0, k(3

-
y = meet the

altitudes (fig., 347) BHb ,
CHC ,

in the points Q, R, the envelope

of QR is a parabola.

Dem. The equation of QR is

a cos A - Ic (ft cos C + y cos B] +

&(P cos 5+ y cos (7- a cos ^4) =0. (917)

For this may be written in the form

(ft -*y) (c s s -* cos C} - (a cos A -
(3 cos B} (# - 1)

=
0,

showing that it passes through the intersection of J3
-

Jcy
-

0,

and a cosA -
fi cosB =

0, and it may be written in the form

(k{3
-

7) (k cos B - cos C} + (y cos C - a cos^)(# -
1) =~0,

showing that it passes through the intersection

kfi
- y =

0, and y cos C - a cosA =
0,

and its discriminant with respect to k is

4a cos A (ft cos B + y cos C- a cos A} -
(ft cos C + y cos _5)

z = 0.

(918)
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Cor. 1 . The points Q, JR divide the lines BHb ,
CHe propor-

tionally. For, evidently, the triangles ABQ, ACR are similar

and

BQ: CR::AB'.AC'.:BHb : CHt .

Hence BQ : BHb :: CR: CHC

Cor. 2. By giving special values to k we get special posi-

tions of QR in each of which it will he a tangent. Thus, if

It = we get a = as the tangent, if k = <x>
,

ft cosB + y cos C - a cos A = 0,

that is, the line H\JIC is a tangent, and by making k = 1, we
see that the internal and external bisectors of the angle BA C
are tangents.

354. If P be the point which divides AHa in the same ratio

as R divides CHe ,
the envelopes of the lines RP, PQ will be

two other parabolas whose equations are obtained from (918) by

interchange of letters, viz.,

4/3 cos B (y cos C 4 a cosA -
ft cos B) = (y cosA + a cos )*.

(919)

4y cos C (a cosA + (3 cos B -
y cos C} =

(a cosB + (3 cos Af.

(920)

We shall denote these three parabola) by -n-a ,
irbi ire, respectively.

355. The symmedian lines AK, BK, CK are the directrices of

the three parabola 7ra ,
7rt ,

TTC ,
and the points alt blt ct are their foci.

Dem. If the ratio in which the points Q, R divide the lines

BHb,
CHC be equal to the ratio MN: HN, 352, QR coincides

with 8, and with 8' if equal to the ratio MN: MR. Hence S, 8'

are tangents to the parabola TTO , and since they are at right

angles to each other, their intersection, the point K, is on the

directrix. And since the internal and external bisectors of the

angleBA C are tangents ( 353, Cor. 2), and are at right angles,

the point A is on the directrix. Hence ^.ZTis the directrix of
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rra . Similarly, JS", CE are the directrices of
TJ-J,

TT
C , respec-

tively.

Again, since the point a>i is common to the circumcircles of

the triangles BHC, HbHHn each of which is formed by three

tangents to 7ra , a^ is its focus. Similarly, i1} c\ are the foci of

fTj, 7TC.

AETZT'S PAEABOLZE (Second Group).

356. These touch the perpendicular bisectors of two sides of

the triangle of reference, and the internal and external bisectors

of the angle formed by these sides. Their equations are

{ ( sin C+y sin JB) coaA - a sin A}* = Bin 3A sin.
(

-
C) (^-y

2

).

(921)

{ (y sinA + a sin 0} cos B -
/3 sin }

2 = sin 3^ sin
(
C - A] (f - a2

).

(922)

{(o6in^ + ^ sin^)cos C-y sin (7)2
= sin3 (7 sin (A - B] (a?

-
(P),

(923)

The subject matter of 347-356, are chiefly taken from

Brocard, Memoires of the Academy of Montpellier, 1886, and from

Neuberg, Mathesis, vol x., p. 166. The name orthocentroidal

is due to Mr. Tucker.

EXERCISES.

1. The foci of the Brocard' s parabolas are the isogonal conjugates of the

summits of Brocard's second triangle.

The polars of orthocentre H are the radii OA, OB, 00 of circuracircle.

2. The foci of Artzt's parabolse are the summits of Brocard's second

triangle.

3. The equations of the lines aai, bbi, cc\ are

2o cos A sin (B
-

C) + ft sin (A - B] + 7 sin (C - A) = 0, (924)

a sin (A - B] + 20 cos B sin (C
- A) + y sin (B - C) = 0, (925)

a sin (B
-

C) + sin (C- A) + 2y cos C sin (A -
)
= 0. (926)

4. The points of contact of the parabolas ira , iri, ire with the sides ofABC
are their points of intersection with the line

/3 sec 5 + y secC= 0. (927)
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5. The directrices of Artzt's parabolas are the medians of ABC.

6. The side be of the triangle abe is a tangent to the parabola .

7. The co-ordinates of the point a\ are \ tan A, sin C, sin B, (928)

8. The co-ordinates of the point a are ,
sec C, sec B. (929)

9. The axis of perspective of the triangles ABC, PQR ( 354) is

al(co&A
- k cos B cos C~) + 0/(cos B - k cos C cos -4)

+ 7/(cos C - k cos^ cos B) = 0, (930)
when k is variable.

10. The envelope of the axis of perspective is the parabola

4 (o cosA + )8 cos B + y cos C) (a/cos A + /cosB + -y/cos (7)

=
{ a (cos Bjcoa C + cos C/cos 5) + (cos C/cos ^ + cosA/cos (7)

)}
2
. (931)

The form of the equation shows that it touches the orthique axis and its

isogonal transverse.

11-14. Prove that the conic (931) is a parabola; (2) that it is inscribed

in the triangle ABC; (3) that it touches the double lines 5, 8' ( 352) ;

(4) that ita directrix is the join of the orthocentre and symmedian point.

15. Prove that the equations of the lines joining the summits of ABC with

the points of contact of the parabola (931) are

a sin 2.4 sin(-) =
/3 sin 25 sin(C'-.4) = 7 sin 2(7 sin (A-B).

(932)
16. The equation of the line Ha\ is

/3 008)3 + 7008(7- 2a cos A = 0. (933)

17. The axis of perspective of the triangles abc, ABC is

a (cos B cos C- cos A cos ?r/3) + 3 (cos C cos A - cos B cos ir/3)

+ y (cos A cosB - cos C cos w/3) = 0. (934)

KIEPERT'S HYPEEBOIA.

357. Upon the sides of a triangle ABC are described three

triangles CA', CA', ABC' directly similar
;

it is required to

investigate in what cases ABC, A'B'C' are in perspective.
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= 0.

SOLUTION. Let a, ft, y be the normal co-ordinates of the

centre of perspective, 0, &
the base angles of the

similar triangles ;
then evi-

dently
O . . 7? /"*/ !*> / 7? /3/N

ft * O x* Cx 8111 I ./? ~~ v )

:^'sin(^-0)
:: sin0.sin(j5-0')

: sin 6'. sin (A -
&].

Hence

a sinA cot -
ft sin 1? cot 0' - (acosA -

ft cos 5) = 0. (1)

And eliminating 0, 0' from this and two similar equations, we get

a sin A, ft sin B, a COBA -
ft cos B,

ft sin B, y sin C, ft cosB -
y cos C,

ysinC, ashiu4, y cos C a cos A

This determinant is reduced by substituting for the second

column the difference between the first and second, and then

adding the second and third rows to the first, and we get

(a sin A + ft sin B + y sin (7)

[aft sin (A - B} + fty sin (B -
(7) + ya sin

(
C - A)} =0 :

the first factor of which denotes the line at infinity, and the

second Kiepert's hyperbola (F). In the former case the linesAA,
BB', CC' are paraUel, and the loci of the points A', B', C' are

Neuberg's circles Na ,
N6 ,
Ne . In the latter case, the triangles

BCA', CAB', ABC' are isosceles. For, adding equation (1)

and two similar ones got by interchanging letters, we get cot 6

= cot & and 6 = 6'. In this case the lines AA', BB', CC', are

a sin (-4
-

6}
=

ft sin (B -
6}

= y sin (C -
0}.

Hence the co-ordinates of the centre of perspective of the triangle

A'B'C 1

(caUed Kiepert's triangle), and ABC are I/sin (A -
6),
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I/sin (B -
0}, I/sin ( (7- 0). Since these are functions of 0, the

point they denote is called the point on the hyperbola (F), and

their inverses, viz. the point sin (A -
0), sin (B -6}, sin

(
C- 6}

is the point on the line OKwhich is the isogonal conjugate of F.

Cor. 1. Every Kiepert's triangle is orthologique with AB C.

For, since the perpendiculars from A', 1?, C' on the sides of

ABC meet in a point, the perpendiculars from A, B, C on the

sides of A'B'C' meet in a point the orthologique centre of

A'B'C' with respect to ABC.

Cor. 2. If the vertices of a Kiepert triangle A'B'C' be points

on Neuberg's circles JVa,
Nb,
Nc, the lines AA, BB'

t
CC' meet

at infinity, and are therefore parallel to the asymptotes of F.

Hence the lines AJa ,
AJ'a (fig., 338) are parallel to the

asymptotes of F.

Cor. 3. If AiB l
Cl ,

AtBtC2 be two Eiepertfs triangles whose

vertices AI, At ;
B

lt
Bt ;

Cit Cz are inverse points with respect to

Neulerg's circles Na ,
Nb,

JVC, respectively, then the corresponding

points PJ, P2 on F are the extremities of a diameter.

For, since A lt At are inverse points with respect to JVa (see

fig., 338), the lines AJa ,
AJ'a are the bisectors of the angle

AiAA z ,
that is, of the angle PiAPz ;

but AJa ,
AJ'a are parallel

to the asymptotes of F. Hence P\Pt is a diameter. As a parti-

cular case, if PI, P2 be the points whose parametric angles are

7T/3, PiP2 is a diameter.

358. Any two points on F whose parametric angles differ by a

right angle are collinear with the centre of the nine-points circle,

and their tangents meet on OK.

Dem. Let the points be 6 and ir/2 + ;
then ( 120, Cor. 1)

the equation of their join is

a sin 2 (^4-0) sin(-) + /? sin 2(5-0) sin (0-^4)

+ y sin 2 (C -
0) sin (A - B) =

;

and this is satisfied by cos (B -
C}, cos (C -

A), cos (A -
B),
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which are the co-ordinates of the centre of the nine-points

circle.

Again, the tangents to F at the points 0, ?r/2 + are ( 120,

Cor. 1),

a sin2 (A -
6} sin (B -

C} + sin2 (B -
6} sin ( C - A}

+ y sin2 (C -
6} sin (A -

J5)
=

0,

a cos2 (A -
0} sin (B -

0} + J3 cos2 (B -
0} sin(C

f - A)
+ ycos

z (C-6)sw(A-) = 0,

which, when added, give the equation of OK.

Cor. The pole of OK with respect to F is the centre of the

nine-points circle.

359. Kiepert's hyperbola is the diametral conic of the triangle

ABC with respect to the line

a cosA + ft cos B + y cos (7=0.

Dem. Denoting the line by la + mfi + ny =
; then, if a

transversal parallel to la + m/3 + ny = meet the sides of AB C
in RI, Rz ,

JS3 ,
and a point be taken on it such

the locus of is required. Let the co-ordinates of be a',

/3', y'; then (61)
ORi = a'ni(m sin C - n sin J9),

OR2
= p'&l(n sinA- I sin (7),

OR3
=

y'O/( sinB - m sin A),
where

Q = ^/ 1
2 + mz + n2 - 2mn cosA - 2nl cos B - 2lm cos C.

Hence, substituting, &c., we get the equation of F.

Cor. The diameter of the triangle corresponding to

a cos A + /3 cosB + y cos C =

is

a/sin (B
- C) + /8/sin (C - A] -t- y/sin (A - B} = 0,
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and this is a diameter of F. Hence the transversal isogonal to

0-ZTis a diameter of F.

360. If any transversal meets F in the points U 2 ,
and OK

in 3 ,
then X + a + 3

= mr. (M'CAT.)

Dem. The join of the points lt 2 is
( 120, Cor. 1)

2a sin (^ - 00 sin (A -
8) sin (B - C] = 0,

or

2a {cos (2A -
0,

-
2 )

- cos (0,
-

2)} sin (5 - C) = 0.

Hence substituting the co-ordinates of the third point, and

omitting the terms containing cos (0!
-

2)
which vanish, we

get
2 cos (2A -

0!
-

2 ) sin (A -
3)

sin (B -
C),

or

2 sin (3A -
0! + 2 + 3)

sin (B -
C)

- 2 sin (A -
0, 4 2

-
3)

sin (B -
C} = 0.

And since 2 sin 3A sin (5 -
(7)

= 0, 2 sinA sin (B - C} = 0,

2 cos .4 sin (5 -
(7)

= 0, this reduces to sin (0t + 2 + 3)
= 0.

Hence 0j + 2 + 3
= nir. (935.)

The following are the parametric angles of some special points

of F and OK: ^
1 . G, K\ centroidon F and symmedian pointon OK, = 0.

2. N, N' ; Tarry's point on F, and infinity on OK, =
ir/2

- <>.

3. Plt PI ; isogonal centres on F, 0= 7r/3.

4. If, 0\ orthocentre on F, circumcentre on OK, =
7r/2.

Cor. 1 . If 0i + 2 he constant, 3 is constant. Hence a chord

PP' joining points on F, the sum of whose parametric angles is

constant, passes through a fixed point on OK. Hence it follows

that pairs of points on F, the sum of whose parametric angles is

given, form a system in involution.

Cor. 2. If 0, + 2
=

0, 3
= denotes the symmedian point.

Now if 1} 2 denote the points P, P' on F, and if Q, Qf be the

corresponding points on OK, it is easy to see that PQJ, P'Q each
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meet F in zero. Hence if any chord of F passes through the

symmedian point, the diagonals of the quadrilateral formed by
the points P, P', and their correspondents Q, Qf on OJTintersect

in the centroid of the triangle ABC.

Cor. 3. The tangents at G and Hio F intersect at JT.

Cor. 4. The diameter PiP2 passes through K, and bisects GH.

361. If AiBiCi, A^BZCZ le two Kiepertfs triangles whose para-

metric angles are complements, the orthologique centre of either

and ABC is the centre of perspective ofABQ and the other.

(M'CAr.)

Dem. Let the parametric angles be 1} 2 ,
then the equations

of AiJBi, CCi are

a (sin C sinA - sin B sin 20j) + /?(sin B sin C- sinA sin 2^

-y sin ((7-2(90 = 0,

a sin (-4
- 0) -

J8 sin (5 -
ft)

= 0,

or a cos (^4 + ft)
-

j8 cos(5 + ft)
= 0.

And these are perpendicular to each other.
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Cor. The Kiepert's triangles A rBr Ci, A 2B2 C2 ,
and the tri-

angle ABC, when Ql + 2
=

vr/2, have a common axis of perspec-

tive which is perpendicular to the line P\P2 .

From 360, Cor. 1, it is seen that the centres of perspective

of the triangles taken two by two are collinear points. Hence

(Sequel, p. 77) they have a common axis of perspective.

Again, let PI, P2 be the centres of perspective of ABC with

A
i
B 1 Cl and A 2B2C2 , respectively, and let A3B3C3 be the common

axis of perspective ;
with A3 ,

B3 , Ci as centres, and A3A, B3B,

CiA as radii describe circles
;
then the radical axis of the circles

A i, Cl is the perpendicular from A on the line B C
t ,
and there-

fore passes through P2 ( 348). Similarly, the radical axis of

the circles B3 , Ci passes through P2 . Hence P2 is on the radical

axis of the circles A3 ,
Bt. Similarly, Pt is on the radical axis

of A 3 ,
B3 . Hence the proposition is proved.

Cor. 2. The circles A3 ,
B3 ,

C3 are coaxal.

HYPERBOLA F'.

362. Let A iBi Cl be the triangle whose sides touch the circum-

circle of the triangle of reference ABC at its summits. Then if

A 2B2C2 be homothetic with AB^with respect to the circumcentre,

A 2B2 C2 is in perspective with ABC, and the locus of the centre of

perspective is a hyperbola, the inverse of Euler's line ofAB C.

(JERABEK.)

Dem. A2 ,
B2 ,

C2 divide the lines OA
1} OB^ OCl in the

same ratio. Let it be / : m. Now it is easy to see that the per-

pendiculars from A2 on the lines A C, AB are (IR tan A sin B
+ mR cos B}j(l + m) and (IR tan A sin C + mR cos C}j(l + m}.
Hence the equation of AAt is

/3 (Z tanA sin C + m cos C) -
y (I tanA sinB + m cos B} = 0,

or

/03sin CsmA-y sinA sinB)-m(-ycosA coaB-fi cos C'cos^f)=0,
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which, with two similar equations got, interchanging letters

vanish identically.

Again, eliminating I, m between any two of these equations,

we get

r a
(3y sin 2A . sin (B -

C) + ya sin 2S sin (C - A]

+ aft sin 2 C sin (A -
JS)

= 0, (936)

which is the isogonal transformation of Euler's line.

EXERCISES.

1. The most general equation of an equilateral hyperbola circumscribed to

the triangle of reference is

fty(f)'cosC- 7' cos S) + yu(y' cosA- a.' 008(7) + aft (a cosB - & cos A} = 0.

(937)

This is the isogonal transformation of the diameter* of the circumcircle

passing through a', ft', y, and includes, as particular cases, Kiepert's,

Jerabek's, and other hyperbolas. Thus, if a'&'y' denote the symmedian

point, it is Kiepert's hyperbola ;
if a'fi'y' be the incentre, we get the hyper-

bola of 342, Cor. 1
; and, if the orthocentre, Jerabek's hyperbola, 362.
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2. Prove that the co-ordinates of any point of the hyperbola (937) may be

denoted by l/(o' -f k cos A), !/(' -f k cos J5), !/(/ + k cos C), when k is

arbitrary. (938)

3. Prove that the locus of the centre of the conic

Va(a'+ kcosA) + \/303' + kcosB) + ^7(7' + kcoaC) = 0,

when k varies is

a, sin A, /3' sin C \ 7' sin .B,

, sin B, 7' sin ^4 + a' sin C, = 0. (939)

7, sin C, a sin J5 -t- &' sin -4

4. When k varies, prove that

V(a'+ kcoaA) + VflOF+lTcoslF) + \/7 (7' + k cos C) =

touches the line

a/03
7
cos tf - 7' cos 5) + )3/(7' cos A - a' cos C) + 7/(a' cos 5 - & cos -4)

= 0.

(940)

5. If a'flV denote the symmedian point, the conic of Ex. 3, 4 may be

written

-d) -1- Vj8sin(JB-e) + ^yain(C-e) = 0. (941)

<. Prove that, when 9 = 60, one focus of (941) is a point on

Kiepert's hyperbola.

7. If A\, B\, Ci be the points of contact of (921) with the sides of ABC,

prove that the axis of perspective of ABC, A\B\C\ is parallel to

a cos A 4 j3 cos B + 7 cos C = 0.

8. If Pbe any point in the line OK, and if AP, BP, GPmeet BC, CA,

AB respectively in A, B', C', the equation of a conic touching the sides

at A', B', C1

, respectively, is

Vo/sin (A - 6) + v'fl/sin (B
-

6) + V7/sin(C
f

-e) =
0, (942)

when $ is the parametric angle of the point.

9. The locus of the centre of (942) in barycentric co-ordinates is

sm(B-C) am(C-A) am(A-) _ Q
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10. The axis of perspective of the triangles ABC, A'B'C' in Ex. 8 is

a/sin (A-6) + 0/sin (B
-

0) + y/sin (C
-

6}
=

0, (944)

and its envelope is

V sin (B-C) + Vj8 sin (G - A) + Vy sin (A - S) = 0. (945)

11. The isogonal transformation of the diameter of the circumcircle which

passes through Tarry' s point is

fty (sin 2A - sin 2o>) sin (B - C) + ya (sin IE - sin 2w) sin (0 - ^i)

+ o (sin 20 - sin 2o>) sin (-4
-

-B)
= 0. (946)

STEINEB'S ELLIPSE.

363. "We have already given the equation (852) of Steiner's

ellipse. Here we shall give some of its most important pro-

perties, in particular its connexion with Kiepert's hyperhola.

Let ABC be the fundamental triangle ; G, 0, H, K
the centroid, circumcentre, orthocentre, symmedian point ;

A'B'C', A"B"C" the complementary and anticomplementary

triangles ; E, E' the circumscribed and inscribed ellipses,

whose centres coincide with G GX, GY their axes. E is

called the Steiner ellipse of the triangle, and GX, GT its

Steiner axes. Let A,, Bs ,
Cs be the symetriques of A, B, C

with respect to G. These are points on E. Now, if R be the

fourth point common to E and the circumcircle, the chords AB,

CR are antiparallel with respect to GX; but AB is parallel to

ASSS . Hence the circumcircle of the triangle AJi.C passes

through R-, therefore R can be constructed, and hence the

lines GX, GT.

Cor. 1. The circumcircles of the triangles ABC,- A,B,C,

A SBCS , AB,Ca have R as a common point.

Cor. 2. The circles osculating JE at the points A, B, C pass

through R.

Cor. 3. If the same reasoning be applied to the ellipse E>

it will be seen that the nine-points circles of the triangles

ABC, GBC, GCA, GAB pass through Q, the complementary

2o2
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of R; and since these circles are the centres of equilateral

hyperbolas circumscribed to the corresponding triangles, Q is

the centre of the Kiepert's hyperbola of ABC.

Cor. 4. R is the centre of the Kiepert's hyperbola of

A"B"C".

Cor. 5. If HQ be produced to N until QN= JIQ, the point

.2V, which evidently is on F, must also be on the circumcircle,

since H is the centre of similitude of the nine-points circle of

ABC, and the circumcircle, and Q is on the nine-points circle.

DEF. Nis called TABBY'S POINT
( 360, 2).

Cor. 6. JVis diametrically opposite to R on the circumcircle.

Cor. 7. Tarry's point is the centre of perspective of the

triangle formed by the centres of Neuberg's circles Na ,
Nb ,
Nn

and the triangle ABC.

364. Steiner's axes are parallel to the asymptotes of Kiepertfs

hyperbola.
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Dem. The Appollonian hyperbola of any point in the plane

of a conic passes through the feet of the normals from that

point, and has its asymptotes parallel to the axes of the conic.

But evidently the Appollonian hyperbola of the point JET with

respect to Steiner's ellipse is Kiepert's hyperbola. Hence the

proposition is proved.

Cor. If R' be the point where the fourth normal from H
meets Steiner's ellipse, RR' is a diameter of Steiner's ellipse,

and GR of I\

365. If the line OK intersect the circumcircle in P, P', the

Simeon's lines of P, P' are the asymptotes of KieperVs hyperbola.

Dem. P, P' are the isogonal conjugates of the points at

infinity on T. Hence if PQ, P'Q' be parallel to J3C, the asymp-
totes of T are parallel to A Q, A Q'. Now, if Pa ,

Pb be the pro-

jections of Pon J3C, CA, it is easy to see that the Simson's line

R

PaPb is perpendicular to A Q. Hence the lines PaPb ,
P'aP'b are

parallel to the asymptotes. And since BP'a
= CPa ,

and APt ,/

= CP'b, they must be the asymptotes.
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Cor. 1. Steiner's axes are parallel to the Simson's lines of

the points P, P1
.

Cor. 2. Since M'Cay's circles are the loci of the centroids of

equibrocardian triangles described on the sides of ABC ( 340,

Cor. 1), it follows that if through the centroid of ABC lines he

drawn parallel to AJa ,
AJ'a (fig., 338), they will meet the

perpendicular to BC at its middle point in the highest and

lowest points of one of M'Cay's circles. Hence the lines from

the centroid to the highest and the lowest point of one of

M'Cay's circles are Steiner's axes.

366. Since, if a chord 6f a hyperbola be the diagonal of a

parallelogram whose sides are parallel to the asymptotes, the

other diagonal will pass through the centre. Hence, applying
this to the chord GH of F, we get the following proposition :

If the orthocentre H of a triangle ABC le projected on the axes of

Steiner, thejoin of the projections passes through the points Q, K,

PU P2 - Conversely, if upon GH as diameter a circle le described,

the lines joining G to its points of intersection with thejoin of Kto
the middle of GH are the axes of Steiner.

367. If A 1B1 C1 and NaNbNc be respectively the first Brocard

triangle and that formed by Neuberg's centres, the parametric

angles of these are complementary. Hence the corresponding
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points R and N are collinear with 0. N is the centre ortho-

logique of A^B\C^ with respect to ABC. Hence it follows that

the lines AR, BR, CR are parallel to the sides of A^BiCi.

Hence the homologous sides of the triangles ABC, A^B^C^ are

antiparallel with respect to the axes of Sterner. Again, if J?i,

.ZZ~2 ,
H3 be the orthocentres of the triangles NBC, NCA, NAB,

the quadrangles ABCN, HiH^zHyH sere (fig., 363) symetriques

with respect to Q. Therefore GA, GH^ are supplemental

chords of T, and hence are antiparallel with respect to GX
;

therefore GA^ passes through HI, and hence through the middle

point of AR.

368. THE Foci or STEINEK.

DBF. The foci of Steiner of a triangle are the foci of an ellipse

A

which touches the sides of the triangle at their middle points.
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Let ABC be the triangle, A'B'C' the ellipse touching the

sides in the points A', B', C'
; K, K' the foci. The perpen-

diculars from K, K' on the sides of ABC meet them in their

points of intersection with the circle on the major axis of the

ellipse. Let Klt Kz ,
IT3 be the feet of the perpendiculars

from K, and let these perpendiculars meet the circle again in

Now, it is evident that taking K as the centre of reciproca-

tion, and the power of K with respect to the circle as modulus,
the ellipse will reciprocate into the circle, and the triangle

ABC into A lBt
C

1 . I say that K is the symmedian point of

Dem. Draw tangents to the auxiliary at the points-^,, Bv , C^

forming a triangle A ZBZCZ . Now, from the principles of reci-

procation, these tangents are the polars of A', B', C'. Hence

the points A 2 ,
Bz ,

C2 are the poles of B'C1

, C'A', A'B'. Again,
since the lines BC, B'C' are parallel, their poles A it A 2 ,

and

the centre of reciprocation K are collinear. Similarly, 1} Bz,

JTare collinear, and also <? C2 ,
K.

Hence .ZTis the Gergonne point of AZBZCZ ,
and therefore the

symmedian point of AiB^C^ (Q. E. D.)

Cor. 1. The joins of the summits of a triangle ABC to a

Steiner focus are inversely proportioned to the sines of the

angles subtended at the focus by the opposite sides. The quad-

rangles KABC, KA^B^Ci are metapolar. Hence KA, KB, KG
are inversely proportional to the normal co-ordinates of K with

respect to the triangle A {Bi Cl ; but these are proportional to

sin A
l} sin lt sin Cv ;

and the angles BKC, CKA, AKB are

the supplements of A^ B^ Ci.

7 Cor. 2. If G be the centroid of a triangle ABC, and if AG,
BG, CG meet the circumcircle again in Gi} G2 ,

G3 ,
G is a

Steiner focus of GiGzG3 .

For GX G, G2 G, G3G are inversely proportional to AG, BG,
CG, and therefore to the sines of the angles BGC, CGA

t AGB,
that is, to the sines of G2GG3 , G^GG^ GiGG2 .
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Cor. 3. The Steiner foci E, E' of the triangle AS Care the

symmedian points of their pedal triangles, and the pedal triangles

are median reciprocals.

For the triangles E^EZE3 w^AJB^C^ are median reciprocals,

and E\E'zE's is equal in every respect to AiB^G^.

Cor. 4. The symmedian point of a triangle is a Steiner focus

of its antipedal triangle ;
for E is the symmedian point of

Cor. 5. The centroid G of the triangle A^B^C^ is a Steiner

focus of its pedal triangle GaGbGc .

For, since G and K are isogonal conjugates with respect to

A&Ci, the lines G6fa,
GGb ,

GGc are inversely proportional to

the normal co-ordinates of K with respect to AiBl C^ that is, to

sin^, sin GI ;
or to sin GbGGc ,

sin GcGGa ,
sin GaGGb .

Cor. 6. If H\>e the orthocentre of ABC, and on HA, SB,
HC lengths HA', HB', HC' be taken equal to the correspond-

ing altitudes, H is a Steiner focus of the triangle A'B' C'.

Cor. 7. if O be a Brocard point such that angle QAS
= SlBC = VGA, and if lines OD, SlE, VF be parallel to the

sides BC, CA, AB, and terminated in D, E, F by CA, AB,

BC, respectively, O is a Steiner focus of DEF. Easily inferred

from Cor. 1.

Cor. 8. The centroid of a triangle ABC is a Steiner focus

of its second Brocard triangle A 2B2CZ . In fact G is the

centroid of the first Brocard triangle A iBl Cl , and A^B^C^

A^B^CZ are inscribed in the same circle, and have G as a

centre of perspective.

Car. 9. If through the points B, C (fig., 355) lines be

drawn parallel to AK, through C, A lines parallel to BK, and

through A, B parallel to CE, these six lines touch an ellipse

of which K is a focus
;
the ellipse is the reciprocal of Lemoine's

first circle.



458 Recent Geometry.

Cor. 10. If through the points B, C parallels be drawn to

the median of the triangle BKC, through C, A parallels to the

median of CKA, and through A, B parallels to the median of

AKB, these six parallels touch a circle which is the inverse of

Lemoine's second circle.

Cor. 11. If K"be the symmedian point of a triangle ABC,
and 0, Oa ,

Ob ,
Oc the circumcentres of ABC, KBC, KGA,

KAB, the points 0, K are the Steiner foci of the triangle

OaObOc, for the quadrangles KABC, 00a b c are metapolar,

and 0, KQ.TQ isogonal conjugates in OaObOe .

^

Cor. 12. If Klt A' be the points of intersection of the

symmedian AK with the circumcircles of ABC, KBC, K^ is

a Steiner focus of A'BC.

The quadrangle K^A'BC is inversely similar to 00a b e
*

EXERCISES.

1. If ma , nth, mc denote the medians of the triangle ABC, A its area, prove

that the parameters of the three parabolas which can be described each touch-

ing two sides, and having the third as chord of contact (called Artzt's first

group of parabolae) are, respectively,

2A2
/>n

3
, 2A2

/a6
s
,

2A2
/wc

3
. (947)

2. Prove that the envelopes of the sides of Kiepert's triangles ( 357) are

{ aa -
(by + c0)cosA}*- sin2^ (A

2 - c2
) (0

2 -
y
2
)
= 0, &c. (948)

This is called Artzt's second group of parabolae ( 356).

The polars of the circumcentre are the altitudes AH, BE, CH.

3. Prove that the parameters of Artzt's second group are, respectively,

A (i
2 - c2)/(2w

3
), A (c

2 - a2)/(24
3
), A (a

2 - A2)/(2nc
3
) ; (949)

and that their foci are the summits of Brocard's second triangle.

4. Prove that the envelope of the axis of perspective of the triangle ABC
and Kiepert's triangle is Kiepert's parabola

\J(lft
- c'

f

)a -f V(<?
2 - 2

)/3 + V(a
2 - bz)y = 0, (950)

and that the co-ordinates of its focus are

I/sin (B - C), I/sin (C- A), lJ8m(A -
B), (951)

* The subject-matter of Arts. 363-368 are chiefly taken from NEUBEKG
ET GOH, Sur les axes et les foyers de Steiner (Congres de Paris).



Recent Geometry. 459

5. If P, Q be any two isogonal conjugate points in the plane of a triangle

ABC, prove that the diameters through A, B, Cof the circumcircles of the

triangles APQ, BPQ, GPQ, respectively, are concurrent.

6. Prove that the Brocard angle () satisfies the equation

sinA cos (A + <f>) + sin B cos (B + <f>) + sin cos (C + <f>)
= 0.

(NEUBERG.) (952)

7. Prove that the Steiner angles V\, V% ( 339) are the roots -of the

equation
sinA sec (A + $>) + sinB sec (B +

<f>)
+ sin Csec (C + $) = 0.

(M'CAY.) (953)

8. If
fi be the Brocard angle, V\, Vz the Steiner angles, prove

+ Vi + Vz = ir/2. (954)

9-12. If F, F' be the Steiner foci of the triangle ABC, a, &, y, ', /3', y
the points of intersection of AF, BF, OF, AF', BF', CF' with the circum-

circle, A\, B\, Ci, A'i, B'\, C'\ the points of intersection of the same lines,

respectively, with circumcircles of the triangles BFC, CFA, AFB, BF'C,

CF'A, AF'B, then

1. .Fis the centroid of a&y, F' that of a'P'y' ;

2. a is the symmedian point of A\BC, that of ABiC, &c ;

3. The Brocard angle of the triangles AiBC, A'iBC . . . is equal to the

first Steiner angle of ABC ;

4. AF. AF' = \AB.AC. ^ (NEUBERG AND GOB.)

13.' The orthocentre of the triangle formed by the tangents to Kiepert's

hyperbola at the points A, B, C is the centre of the nine-points circle

(BROCARD), and the summits of that triangle are points on Neuberg's circles.

14. If two planes be inclined at a given angle, the Brocard angle of the

orthogonal projection of any equilateral triangle on one of them made on the

other is constant.

15. Being given the symmedians of a triangle, find the directions of its sides.

16. Being the second triangle of Brocard AzBzCi of ABC, construct ^-BC.

17. Prove that the foci of the Lemoine ellipse

=

are the centroid and symmedian points.

18. If Ta TbTc be the triangle formed by the tangents to Jerabek's hyper-

bola
( 362) at the points A, B, C, the axis of perspective of TaTbTe and ABC

is the inverse transversal of the Euler line HO.
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19. If N1
be the fourth point of intersection of F' with the circumcircle,

HN' is a diameter of r'.

20. If he the circumcentre of the triangle ABC, prove that the triangle

formed hy the circumcentres of OBC, OCA, OAB is in perspective with

ABC, and that the centre of perspective is the isogonal conjugate of the

centre of the nine-points circle. (NBUBERG.)

21. If the normals at A, B, C to a circumconic of the triangle ABC he

concurrent, the locus of the centre is the cubic

a (P - 7
2
)/a + (7

2 - a2)/i + y (a
2 - 2

)/c
= 0.

LEMMA. If the normals meet, and if 0, <f>, \\i be the angles made by BG,

CA, AB with the lines from centre to middle points, cot + cot
<J> + cot

ij>
= 0.

For, let o, 0, if be the eccentric angles of A, B, C, then the equation

of BC is

x cos \ ()3 + y)/a + y sin \ (& + y)jb = cos J (0
-

7) ;

and if be the centre, and D the middle point of BC, the equation of OD is

a; sin J (0 + 7)/
- y cos \ (0 + -y)/4

= 0.

Hence for the angle ODB,
cot = (a

2 - i2
)
sin (0 + y)/2ai.

Similarly,

cot
<f>
=

(a
2 - 2

) sin (y + o)/2ai, cot ^ = (a
2 - 42

)
sin (a + j8)/2a*.

But since the normals are concurrent,

sin(j3 + y) + sin (7 + o) + sin (o + )8)
= 0.

Hence cot + cot
(f> + cot

if/
= 0.

Now, to apply this to the question. Let a', ', y' be the co-ordinates of

the centre of the circumconic ; and the co-ordinates of the middle point of

BC&re 0, sin C, sin B. Hence the equation of the line joining the centre to

the middle point is

a(/3'sinJS
-

y' sinC')
- j3a'sin + 701' sin C= 0,

and the equation of BC is a = 0. Hence

cotfl = (jS'sin B - y'&inC+ a'sin(.B
-

C)}/2a' sin.B sin C;
therefore

2 cot =
j8'/a' sin C - y'ja sin B + cot C - cot B,

which, added to two similar equations, gives, after omitting accents,

(' ~
-X
2
)/* +W - 2

)/* + 7(
2 -

fl
2
)/'

= 0. (955)

This is called the seventeen-point cubic. It passes through the summits

of the triangle of reference, the middle points of the sides, the middle points

of the altitudes, the centres of the inscribed and escribed circles, the circum-

centre, orthocentrc, centroid, and symmedian point.
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22. Prove that the isogonal transformation of the line joining the circum-

centre to the incentre passes through Nagel's point and through the Gcrgonne

point.

23. If the perpendiculars from the incentre on the sides of th<f triangle

ABC meet any circle concentric with the incircle in o, , 7, the locus of the

centre of perspective of the triangles ABC, a&y is the isogonal transforma-

tion of the join of circumcentre and incentre.

24. Artzt's parabolae of first group cut each other in the centroids 'A', B',

0' of the triangles BOG, GAG, ABG. Prove that the areas AB'C',CA'B',
BA'C' hounded hy the three parabolse = 17A/81; that the areasA C'B, BA'C,
CB'A bounded by a side and two parabolse = 6A/81. (DE LONGCHAMPS.)

25. If on the sides BA, GA of the triangle ABC we cut equal segments

BB', CC', the envelope of the line B'C' is, in barycentric co-ordinates, the

parabola

V(
-

c) a + V0 + V^= 0.

This curve touches BC, CA, AB ;
the focus is the middle point of the arc

BAG of circumcircle ; the axis is the external bisector of the angle BAG;
the parameter = 2

(
b c) cos2 \AJain | A . (MANDART.)

26. On the sides BC, CA, AB of the triangle ABC are described three

segments of circles containing the angles A + <p, B + </>, C+ tp, where
tf>

is

variable. The locus of the radical centre is Kiepert's hyperbola. (TESCH.)

27. Each line L contains two isogonal conjugate points M, M'. When
the line L turns about a fixed point P, the points M, M' move upon a cubic

passing through P. The seventeen-point cubic (Ex. 21) corresponds to the

centroid taken for the fixed point P.

28. In Ex. 21 find the locus of the intersection of the normals at A, B, C.

29. If the normals at the points of contact of the sides of the triangle

ABC with any inconic be concurrent, find the locus of the centre, also of

the point of intersection of the three normals.

Ans. The cubics in Exs. 21 and 28.

30. Let x\y\z\, x^yz^z be two points M\, M2 of the line Z =/# + gy4hz= Q.

If the join of the isogonal conjugate points of M\, My, cut L in the point

Ms (xayzzs) , prove that fxixzx3 + ffyiyzyz + hziz&z = 0. (NEUBERG).

31. In Ex. 30, if the co-ordinates of the two fixed points of L be denoted

by 0)87, a'0'y', and the co-ordinates of M\, Mi, M$ by (a + k\n, ....),

(a + ha, ....), (a 4- faa, ....), prove the relation

where m, n, p and q are constant. (NEUBERG.)



CHAPTER XV.

INVAEIANT THEORY OF CONICS.

PRELIMINARY PROPOSITIONS AND DEFINITIONS.

369. DBF. i. If ABC, A'B'C' be two triangles, the equa-

tions of whose sides are

a = 0, (3
= 0, y .

;
a' = 0, ft'

= 0, y'
=

0,

respectively ;
then ( 56), a, /3, y can be expressed linearly in

terms of a', ft', y', say

+ vjy' ; ft
s AX + /Kg/3' + i/2y';

y s X3a' + /Ufl/3' + v3y'.

Then, if by these substitutions the equation of any curve be

transferred from ABC as triangle of reference to A'B'C', the

determinant (Xj/^vs) formed by the coefficients of substitution

is called the determinant of transformation (CLEBSCH, p. 167).

DBF. n. Any function of the coefficients of the equation of a

curve is called an INVARIANT, if when linearly transformed the

same function of the new coefficients is equal to the old function

multiplied by some power of the determinant of transformation.

DBF. in. A covariant is a function of both coefficients and

variables, which remains unaltered by transformation, except a

factor which is some power of the determinant of transformation.

DBF. iv. If the equation to be transformed be in line co-

ordinates, the functions which remain unaltered by transforma-

tion are called contravariants.



Invariant Theory of 'Conies. 463

DBF. v. A function which contains both point and line co-ordi-

nates is called a mixed concomitant (German Zwischenformen.)

DBF. vi. If Si, S2 be two fixed conies, then the system

Si + kS2 where k is variable is called a PENCIL of conies. A
system liSi + 12S2 + 13S3 consisting of three fixed conies which

are not of the same pencil with variable multiples /1} 12 ,
13 is

called a NET OF CONICS. The corresponding systems in line co-

ordinates, viz. 2i + k2,2 ,
and ^2i + 12^2 + 423 are called, respec-

tively, a TANGENTIAL PENCIL and a TANGENTIAL NET of COmCS.

In this chapter the angles of the triangle of reference will be

denoted by A\, A2 ,
A3 , respectively, and its sides by a

i}
a2 ,

a3 .

370. If & = ax
* =

0, S2
s bx

* = be the
equations_

of two

conies, and if by linear transformation they become Si, S2,
it

is evident that the pencil Si + kS2
= will, by the same trans-

formation, become Si + kS2
= 0. Hence, if k be determined so

as to make Si + kS2
= fulfil some special condition, such for

instance as to represent an equilateral hyperbola, to touch a

given line, &c., the same value of k will make St + kS2
=

fulfil the same condition. Now, if in any function of the

coefficients of Si representing a property of Si we substitute

#,, + kbu for an, 0522 + kb22 for a22 , &c., the resulting equation

in k will represent the same property for Si + kS2 . And since

the value of k remains unaltered by transformation, the new

equation in k can differ from the old only by a factor. (This in

all cases is some power of the determinant of transformation.)

Hence the coefficients of the several powers of k will be invariants.

371. Given

Si = anXi + a22x2
z + a33x3

z =
0, S2

= x? + x2
2 + x = 0,

it is required to find the polar reciprocal of Si with respect to S2)

and of S2 with respect to Si.

Let x\, x'2 ,
x'3 be the co-ordinates of the pole of a tangent to

Si with respect to S2 . Then the equation of the tangent must

be

XiX\ + x-ix'-i + x3x'3
=

;
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and if the point of contact be x"i, #"2 ,
#"3 ,

it must also be

ll#"l#l + <hltf'&t + <h&"3%3 = 0.

Hence, comparing coefficients,

and since x"i, x"z ,
x"3 are the co-ordinates of a point on S v ,

sub-

stituting their values, and omitting accents, we get

,

2 = 0, (956)

which is the polar reciprocal of Si with respect to S2 .

Similarly, the polar reciprocal of S2 with respect to St is

= 0. (957)

LAMP'S EQUATION.

372. Three conies of the pencil Sl
- kS2

= represent lir>

Dem. Let Si s ax
3 = 0, S3

= bx
2 = 0, then the discriminant

of Si - kSt is

<?31 #031, #32 At>32, <?33 A6*33

or,

where A], A2 are the discriminants of a,
2
,
bf

z
, respectively,

!
= A, 2

= a
2
.

Hence the condition that Si - ASZ = may denote a line is

A! - k@i + /fc
z

2
- ^A2

=
0, (958)

which, giving three values of k, proves the proposition.
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The line pairs are the three pairs of opposite sides of the

quadrangle whose summits are the points of intersection of Slt

82 . Their equation is formed by eliminating k between (958)
and $i - lcSz = 0. Thus we get

A^,3 -
18^81 + QtStSS - AA3 = 0. (959)

If 82 = denote a line pair, A2 vanishes, being the discrimi-

nant, and equation (958) reduces to the quadratic

A! -
i + # 2

= 0, (960)

showing that through the points of intersection of a conic ^
and a line pair Sz can be drawn two other line pairs, their

equation is found, by eliminating k between (960) and $x
- kStt

to be

A!-S2
2 -

xSatfi + 02/Si
2 = 0.

. (961)

If Sz = be the square of a line, say (A.^)
8
,
then not only does

A2 vanish identically, but also a ,
and j becomes A*? or 2ij

then the equation (958) reduces to AI - &2i = 0, and only one

line pair can be drawn, viz.,

Ax (X,)
2 - 2^ = 0, (962)

which will evidently be the tangent pair to Si at the points

where it meets \x . This will give the equation of the asymp-
totes if A.,

= be the line at infinity.

The equation (958) is the fundamental one in the invariant

theory of conies. It was first given by Lame, in his Examen

des Differentes Methodes. See FIEDLEE'S Translation of SALMON'S

Conic Sections. I shall call it LAME'S EQUATION.

EXERCISES.

1. Find the equation of the bisectors of the angles of the line pair

ax* + Ihxy + by* = 0,

the axes being oblique.

2H
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The equation
#2 + y

2 + 2a;y cos - r2 =

represents a circle. Hence the quadratic in k, which is the discriminant of

2hxy + by"
1 - k (x

z + y
2 + 2ry cos u - r2

)
=

;

or, of

(a
-

k)x* + (4
-

)y
2 + 2(h

- kcoau)xy + Ar2 = 0,

will give two line pairs which, from the property of the circle, will be such

that each pair will consist of parallel lines, and also such that one pair will

be perpendicular to the other. Now, if we make r = in the equation of

the circle, each line pair will become a perfect square ; but, if r = 0, the

discriminant is

(a
-

k)(b -K)-(h-k cos w)
2 = 0,

and, eliminating k, we get the square of the pair of bisectors

{(acosw- A)*
2 + (a- b)xy + (A

- i cos w)y
2
}
2 = 0. (963)

2. Find the locus of the intersection of normals to an ellipse at the

extremities of a chord which passes through a given point a0.

Let the ellipse be

**/a
a + y

1
/*

1 -1 = 0;

then, if the normals meet in x'y', their feet are the points common to

*2
/a

2 4 y
2
/4

2 -1 =

with the Apollonian hyperbola

2 (c*xy + b*y'x
- aVy) =

of the point x'y'. Hence taking these conies for Si, 82, respectively, we

get

Ai = -l/(a
2i7 ), 0i = 0, e2 = -(aV2 + iy2

-c*), A = - 2flWeVy' ;

and forming the equation of the three line pairs (959), substituting a, for

xy, and removing accents, we get, after a slight reduction,

4aW(a*0x - i2 ay - C2aj8)
3 + c*xy(aW + a2

/3
2 - a2*2

)

3

+ (a
2*2 + *V - ^(^Bx - J2oy - c2o^)(a

242 + a2/3
2 - 2i2)

2 = 0. (964)

This denotes a curve of the third order ; but if a = 0, or = 0, that is, if

the point be on either axis, it is. a conic, the axis itself being in this case a part

of the locus. The locus also reduces to a conic if the point aft be at infinity,

that is, the locus of the intersection of normals at the extremities of parallel

chords of a conic is a conic a proposition which may be inferred from

equation (547).
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CALCULATION OF INVARIANTS.

373. 1. Calculate the invariants for the conies.

n^i
2 + 22#2

2 + 33#3
2 =

0, and #i
2 + xy

2 + x3
* = 0.

. Ans. AI = au aa 33. i
= ana22 + #22#33 + ^33^11- 2

~
n + <ht + %.

A 2
= 1. Hence Lame's equation is :::/:

(#-nX*-a)(*-03s) = 0. (965)

2. Form Lame's equation for

-f 22 + 033)
- A3 = 0. (966)

3. Form Lame's equation for the ellipse

and the circle

. (*-#7 + (y-y')
2 -r2 = 0.

Am. #'2
/(

2 -)+y'2

/(i
2 -)+r2/-l=0. (967)

Hence

Aj = - 1 a 2
, !

= x* 4 y
2 - a2 - -

2 = ^/a* + y"/5
2 - l _ r2

(a
2 + 2

)/(a
2
52

), A2
= - r2 .

4. Calculate the invariants for the parabola

y*
- 4ax = 0,

and the circle

(*-*')
2
+(y-y')

2 -r2 =o.
Ans. , -.

5. Calculate the invariants for two conies, respectively,

inscribed and circumscribed to the triangle of reference.

Let

= 0.

8Z
= 2 (023X2X3 + a31x3Xi + (tuX1x2 ')

=
;

then

2
1= -

(02J&! 4- %J2 + fliA)
2
,
Aa

= 2012a23<z31 . (968)
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From these values it follows that the condition that two conies

are so related that a triangle may be inscribed in one, and

circumscribed to the other, is

4A 1 2
=

1

2
. (CA.TLKY.) (969)

In connexion with this may be stated the following theorem :

If two given conies be such that a variable triangle can be

inscribed in one, and circumscribed to the other, there is given

another conic to which the triangle is antipolar.

For if

Si e -v/^i#i + V^byX2 + \Sb3x3
=
0,

8, s 2 (013X1X3 + <*3i#3#i + ia#itf2)
= 0,

then the conic W
+
W

+
W =

33 <*3l #12

reciprocates 8t into St,
and is therefore given.

Or, more generally, the three special relations which a

triangle can have with respect to a conic are to be inscribed,

circumscribed, or antipolar, then the theorem is true, that if a

variable triangle be connected with given conies by any two of

these relations, it is connected with a third conic given by the

remaining relation. For example, the Brocard ellipse is

v/a-j/o, + \/ar2/2 + V'#3/03
=

0,

and Kiepert's hyperbola is

x&s sin (A 2
-A 3) + x3Xi sin (A3

- A^ + x^ sin (A l
-
AJ) = 0,

and the conic

x?l(aj
-

03') + xJI(aj
-
of) + xJ/W -

oj) =

is antipolar, and reciprocates one into the other.

6. Calculate the invariants for the Brocard ellipse, and the

Brocard circle

fli^zfls (a?i
2 + #2

2 + ar3
2
)
- (afx&a + ofx3Xi + Os

3
XiX2)

= 0.

Ans. Aj = - 4/(fl1

2
2V), i

= -
("i

2 + az
2 + 03

2

)

A, = - i (fl,flao3)(i
6 + <tf +

6 - SaxWflf.
8

). (971)
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In terms of these, and of the circumradius, can be expressed
several metrical relations in the recent Geometry of the triangle.

Thus, if p, p' denote the radii of the Lemoine and Brocard

circles, respectively,

p1
=-A 1A2/01

s
. (9.72)

TACT INVARIANT OP TWO CONICS.

374. If the four points common to two- conies Sit S3 be

A, B, C, D, and j, kz ,
1c3 the roots of Lame's equation ; then

the three line pairs

are AB . CD, SO. AD, CA.BD, respectively; but if any
two of the points A, B, C, D coincide, say A, B, two of

the line pairs will coincide, viz. BC.AD, and CA.BD,
each of which will become AC .AD. Hence if Si touch Sz there

will be only two distinct line pairs. Hence Lame's equation

will have a pair of equal roots. Therefore the condition of

contact of St and S2 called their Tact invariant is the vanishing

of the discriminant of Lame's equation, viz.,

4 (3A! 2
-

j'XSA,! - 2
2
)
- (9AiA2

-
! 2)

8 =
;

or

1
2

2
Z + 9AxA, (20J02

-
SAiAa) - 4 (A!/ +AA8

)
= 0. (973)

Cor. 1. If !
= the tact invariant is

27AJA2
2+4 2

3 =0. (974)

Cor. 2. If A2
= 0, the tact invariant is

i
2 = 4A! 2 . (975)

"When A2
= S2 denotes a line pair, and the equation (975)

is the condition that Si should touch one of these lines.

We have met this equation, 373, 4, as the condition that a

triangle can be described about Si, having its summits on S2 ,
of

which, it is easy to see, the present is a particular case.
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EXERCISES.

1. Find the tact invariant of the ellipse

and the Apollonian hyperbola

2 (c*xy -f b*y'x
-

atx'y) = 0.

Since the Apollonian hyperbola passes through the feet of normals from

x'y' to the ellipse, its contact with the ellipse denotes that two of the

normals coincide, and therefore that x'y' is the corresponding centre of

curvature. Hence, forming the tact invariant, and omitting accents, we
have the evolute of the ellipse, viz.,

(aV+iy-c*)+27 2iV*V = 0. (976)

2. Find the tact invariant of

and

It is evident that the centre of the circle is at the distance r from the

ellipse. Hence, if we form the tact invariant, and omit accents, we get

the parallel to the ellipse at the distance r, viz.

27 oWr4 + 4 (a
2*2 + **r* 4 r2a2 -6V -aV) 3

- 4a2i2r2 (a;
2
-f y*

- a? - iz - r8
)
3

+ ISaWr2
(*

2 + y
2 - a2 - 2 - r2

)

(a
2*2 + 42r2 + r2 2 - 4V - 2

y
2
)

(a
2*2 + 6V2 + r2a2 -iV - a2y

2
)

2
0. (977 )

Cor. In the preceding equation ; arranged according to the powers of r2 ,

the coefficient of the second term contains the factor

o2 - b-) y*+ (* + i) o\ (978)

Hence this equated to a constant is the locus of points, the sum of the

squares of whose normal distances to the curve is given, which is therefore

a conic.

3. What is the tact invariant of the inscribed conic

and the circumscribed

023X1X3 + asi*3#l
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OSCULATION or TWO CONICS.

375. If the conies 8\8t osculate, Lame's equation will have

three equal roots. Hence

3A 1} !, 2 ,
3A2 are in GP

;

therefore

i-SCVA,)*, b-SCAiA,
1
)*,

SA!^!3
,

3A2 1
=

2
2

,
9AiAa = !,. (979)

EXERCISES.

The centres of the six circles which can he described through any point to

osculate a given conic lie on a conic. (MALET.)

Taking the given point as origin, and the axes of co-ordinates parallel to

those of the conic, the equations of the conic and circle may he written

flns2 + 22y
2 + 2i3#+ Zazay + sj = 0,

x2
+y*-2a;ix-2yiy = Q.

Hence
A: =

01 =

02=-
A2 = -(*i

2 + yi
2
).

These values substituted in 3Ai2 -
i
2 = give

3 (01l02233
-

flllffZS
2 - M312

) (awXl*+ ail^l
2 -

20531*1
-
2023^1

-
33)

+ (222a3ia;i 4 2an23yi + fl2233 - 23
2 + 33ii - si

2
)

2 = 0. (980)

Cor. 1. If the centre he origin and the conic a rectangular hyperbola,

azs = 0, 031 = 0, and n + 022 = 0, and the conic (980) coincides with the

given one. Hence the centres of the osculating circles of an equilateral

hyperbola which pass through its centre lie on the hyperbola. (Ibid.)

Cor. 2. If either an or 022 vanish, that is, if the given conic be a parabola,

the conic of centres will be a parabola.

IXVABJANT ANGLES OP TWO CONICS.

376. The roots of Lame's equation are connected with three

angles in terms of which some of the invariants and covariants

can be expressed. In order to show this, let the conies 8^ St

be referred to their common antipolar triangle. Thus, let

0> $2 = tf!
2 + X<? + X? = 0,
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and let 1? 3 , 3 denote the angles ( 45, Ex. 6) of the anharmonic

ratios of the three quartets of points in which the sides of the

antipolar triangle are intersected by the two conies. Then to

determine j we must find the anharmonic ratio of the points in

which the side x^ is intersected by S and S2 . For that purpose

we have the pencil formed by the line pairs

022#2
2 + <*tt#j

2 = 0, x2
2 + #3

2 = 0.

Thus we get

sin2 0i =

cos3 i Ol
=

(022* + a33^)
J

Hence
sin20, = -

Now denoting the roots of Lame's equation by fa, k,, k3 ,
these

are ( 373, 1) an , 022, 033, respectively. Hence,

sin20, =- (#,
-

Hence the discriminant of Lame's equation is

- 64A 1

2
(sin

2
1 . sin2 2 . sin2^3)/A2' = 0,

or omitting the multiplier
- 64A!

2

/A2
2 which is numerical, the

discriminant is

sin20! . sin
2

2 sin2 3
= 0,

and as each sin2 is the product of two anharmonic ratios, we

have the following theorem :

The tact invariant of two conies is the product of six anharmonic

ratios, and the vanishing of some one of these ratios is a necessary

condition of the contact of the conies.

Cor. 1. From the values of the invariant angles we get

Hence

01+03 + 03 = W7T. (981)

That is the sum of the three invariant angles of two conies is

some multiple of TT.
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Cor. 2. If S' be the reciprocal of S2 with respect to Si, and

if we form the invariant angles for S2 , S', we get 201} 202 ,
20a.

Similarly, if S" be the reciprocal of Si with respect to S' the

invariant angles for S" and S2 are 301? 302 ,
303 ,

&c. Again, if

Sr denote the conic which reciprocates Si into S2 ,
the invariant

angles of Sr,
S2 are 1} 2 , % 3 ,

&c.

Cor. 3. The envelope of the line X, = 0, cut harmonically by

Si, S2t is

(cos 0i//M) Ai
2 + (cos 2//M)V + (cos 03/M)V = 0. (982)

This is easily inferred from equation (862), page 371.

Cor. 4. The locus of points whence tangents to Si, S2 form

a harmonic pencil is

(k i cos ft) #!
2 + (k2 cos 2) x? + ( 3

4 cos 3)
*3

2 = 0. (983)

377. To find the anharmonic ratio of the pencil of lines drawn

from any point of the conic Si - kS2 = to the four points common

to Si, S2 . (GrUNDELFINGEB.)

Let the points be A, B, C, D. If Tlt
Tz denote the tangents

to Si, S2 at one of these points, say A, then 2\ - JcTz = will

be the tangent to Si - kS2
= at A, and h, Tcz ,

k3 being the

roots of Lame's equation,

TI - kiT2 = 0, TI - k2T2
= 0, TI - k2T3

=

will be the equations of the lines AB, A C, AD, respectively.

Hence the anharmonic ratio of the pencil drawn from a point

consecutive to A on 8^- TcS2 to the four points A, B, C, D, is

(k
-
kj(k2

- k3) : (k
- k2}(ki

-
fc), (984)

and therefore this will be the anharmonic ratio of the pencil from

any point of Si - kS2 to the four common points.

Gundelfinger's solution is given in Fiedler's translation of

Salmon's Conic Sections, vol. ii., p. 668.

378. Find the locus of the centres of all the conies of the pencil

Si - kS2
= 0.
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Let at'u ar'2 ,
x'3 be the centre

;
then the line at infinity will be

the polar of x\x\x\. Hence we get, if X be some constant,

<*n
- kx'\ = X sinA

l 2j
-

Jtx't = X sin Al

Hence, eliminating k and X, and omitting accents, we get, after

replacing ou , o^, 033 by the roots of Lame's equation

(kz k^) sin AI (3 - i) sin A% (fa 2) sin A3
+ : H -^ = 0.

Xl X* X3

Or, in terms of the invariant angles of 376,

sinA
l

. sin 0\ sinAz . sin 2 sin A 3 . sin 3 _

(985)

DEF. The enharmonic ratio of four conies of a pencil is the

anharmonic ratio of the tangents at a common point.

Cor. 1. The anharmonic ratio of any four conies

S, - VS2
=

0, 8,.
- V'S2

= 0, &c.,

is (V - #')(*"'
- #)/(# -

*"')(*"
-

**). (986)

It is equal to the anharmonic ratio of the corresponding

points on the conic (985).

Cor. 2. The reciprocal of (985) with respect to (983) is

inAI . sin 20t . xl + y/sinA2 . sin 202 . xt

~x~3
= 0, (987;

and its reciprocal with respect to (982) is

tan 1 .xl + v/sin AI tan 6Z #2 + \/sin ^43 tan 3 . #3
= 0.

(988)

Cor. 3. The fourth common tangent of the conies (987),

(988) is

sinAI tan a . Xi sin A z tan Qz . x2 sinA3 tan 3 . x3

cos 202
- cos 2^3 cos 203

- cos 2^ cos 20! - cos 202

= 0.
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CONICS HABMONICALLY INSCRIBED AND CIHCUMSCEIBED.

379. DBF. A conic is said to be harmonically inscribed in or

circumscribed to another when it is inscribed or circumscribed to

a triangle antipolar with respect to the other. (See SMITH, Pro-

ceedings of the London Mathematical Society, vol. ii., p. 87.)

380. If the invariant l vanish, the conic 82 is harmonically

circumscribed to Si, and Si is harmonically inscribed in S2 .

Dem. Let j
= a,

2 = 0, fl, a i. =
;.

then

1
= Af =

(#22033
-

23
2
)
bu + (OnOn

-
31
2
) #22

Hence i vanishes, if 023, a31 , 12 ,
bu ,

b22 , b^ each separately

vanish
;
that is, if the equations of Si, S2 be of the forms

~
0, 2 (^2^3 + ^31^3^1 + &12#l#z)

=
J

or, when ^2 is harmonically circumscribed to Slf

Again, ! vanishes, if

each separately vanish, which will happen, if Si, S2 can be

written in the forms

and in this case Si is harmonically inscribed in S2 .

Cor. 1. If a conic S2 harmonically circumscribe Si, then Si

is harmonically inscribed in Sz .

Cor. 2. If each of two conies, Si, S2 be harmonically circum-

scribed to a third conic S, every conic of the pencil Si - kS2 is

harmonically circumscribed to S.

Cor. 3. If each of three conies Slt S2 ,
S3 be harmonically

circumscribed to S, every conic of the net liSi + l2St + Z3 3 is

harmonically circumscribed to S.
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Cor. 4. If 2 = oA2 = 0, 8 = a* = be two conies in point

and line co-ordinates, respectively, then, if 2 be harmonically

inscribed in S, aa
2 =0. For, the coefficients 0^(133 -a23*, &c.,

in ! are the coefficients of the tangential equation of Si.

Cor. 5. If Si, 2 ,
S3 be three conies given by their trilinear

equations, and 2i, 2z, 23 conies in tangential equations ;
and

if each of the latter be harmonically inscribed in each of the

former, then each conic of the tangential net

is harmonically inscribed in each conic of the trilinear net

liSi + 12S2 + ^383 = 0.

EXERCISES.

1. Find the condition that the circle (x
-

x'}* + (y
-

y')*
- r* = may be

harmonically circumscribed to the conic

ax* + by* + Ihxy + 2gx + 2fy + c = 0.

The invariant 61 = gives

A + B + C(xi + y'*
-

r*)
- 2Gx' - 2Fy' = 0.

In this result, if we remove accents, we get

C(x* + y*)
- 2Gx - 2Fy+A + - Crz = 0, (989)

which becomes the orthoptic circle when r vanishes.

Cor. A circle circumscribed harmonically to a conic cuts its orthoptic

circle at right angles.

2. Find the condition that (x
-

x')* + (y
-

y')* -r* = Q may be inscribed

harmonically in

ax* -f by* + Zhxy + Igx + 2fy + c = 0.

The tangential equation of the circle is

(x'\ + y'p+l)*-r*(\* + n*) = Q.

Hence, forming the invariant, we find the required condition

where So is the power of the point x'y' with respect to the conic. Hence, if
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the radius of the circle be given, the locus of its centre is a conic concentric,

and homothetic with the given conic.

3. Find the locus of points whence tangents to the conies a 2 = 0, S 2 =

form a harmonic pencil. (Compare 286.)

The tangent pair from a point y\yiy$ to the conic i*
2 =

is, equation (400),

+ 22(-B3iyiy2 + -Buysyi
-

^zsyi
2 -

-Buyzys) #2*3 = 0.

Now, by the conditions of the question, these form a line pair harmonically

circumscribed to a*
2

. Hence the invariant 0i of ax2 = 0, and this line pair

must vanish. Hence, forming the invariant, and writing xi, xz , x$ for yi

yz, ys, we get the required locus, viz.,

0. (990)

This equation was first given by Staudt, in the Niirnberger Programm
for 1834. Its importance as a covariant was first pointed out by Salmon in

the Cambridge and Dublin Mathematical Journal, vol. ix., p. 30. He denoted

it F.

4. Form the covariant Jfor Brocard's ellipse and Kiepert's hyperbola.

Ant. {sin (Az
- A 3)la L + sin (A3

-
Ai)la2 + sin (A\

-
Az)la3 ]

{ sin (Ai
-
At) x\x-i + sin (Az

- A$) XjXz + sin (Az - ^1)^3^! }

sin (A i
- Az) sin (A2

- AS) sin (A3
-
AI)

=0 .

As)

5. If four equilateral homothetic hyperbolas have a common point, and be

harmonically circumscribed to the same conic, the points of intersection of

any pair, and those of the remaining pair lie on an equilateral hyperbola.

(PROFESSOR CUKTIS, S.J.)

For, taking the common point as origin of co-ordinates, and the four

hyperbolae as Si, S2, 83, St, where

Si = ai (x*
- y

2
) + Ihixy + IgiX + 2/iy = 0,

we have, from the given conditions, four equations of the form

ai(A -) + 2hiH+ 2jnG + 1f\F= 0.
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= 0.

Hence, multiplying the first column by *a y3
, the second by 2xy, the

third by 2x, the fourth by 1y, and adding the second, third, and fourth

columns to the first, we get

i, Al, fl) /!'

t, Aj, fft, /2>

Or, as it may be written,

= 0.

- hSi + 13S9 - hSt = 0.

Hence the equilateral hyperbola l\Si kSz = passing through the inter-

section of Si, St is identical with ^3 ltSi passing through the intersection

of Sa and 4.

6. If two conies S\, Si be homothetic, and harmonically circumscribed to

a given conic S', their common chord passes through the centre of 5'.

(PROFESSOR CURTIS, S.J.)

From the hypothesis we have

and

Therefore

'
=. 0,

'

-f 2A3.H" -} biff + 2ftF' + 2yzG' + c,C' - 0.

= 0.

But G'\C', F'jC' are the co-ordinates of the centre of S'. Hence the pro-

position is proved.

7. If a variable conic be harmonically inscribed in four conies, the locus

of its centre is a right line.

From the hypothesis we have four relations of the form

4ailC+ BbilC+ 2HhilC+ 21/1/0+ 2GgilC+ a = 0;

and, eliminating AjC, SIC, H\C, we get a linear relation between G'/C'and

F\C. This includes Newton's theorem as a particular case that the centre of

a conic inscribed in a given quadrilateral moves on a right line.
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OTHER PROPERTIES OF HARMONIC Comes.

381. If a conic S2
= l^x^ + b^x^ + b3iX3Xi = 0, circumscribe

harmonically the conic $x
= ax

z =
0, the centre of perspective of

any conic inscribed in $2 ,
and its polar reciprocal with respect to

Si is a point on <Sj. (SALMON.)

Taking the triangle of reference as the one inscribed in S2t

the sides of its polar reciprocal with respect to $ are, re-

spectively,

= 0, 2l#l + 022#2 + #23#3 = 0,

=
J

and the co-ordinates of the centre of perspective of the triangle

of reference, and that formed by these lines are \(A^ \IA 3\,

1/A 12 and these substituted in Sa satisfy it in virtue of the

relation

t
= A 12Ji2 + ^23^23 + -4si^3I = 0.

Again, if the tangential equation of Si be

.423X2X3 + -^s^Xj -f- ^i2X1X2
= 0,

and
Sa

= b,
z = 0,

then the axis of perspective of the triangle of reference and its

polar reciprocal with respect to S2 is

=

and the condition that this should touch Si is

^^ + Asibn + A l2b12
=

0, or !
= 0.

Hence the envelope of the axis ofperspective of any triangle cir-

cumscribed to Si, and its polar reciprocal with respect to S2 ,
is the

conic Si.

Cor. From the foregoing demonstration we infer that if two

triangles be polar reciprocals with respect to a conic, and if one of

them be the triangle of reference, the co-ordinates of the axis of

perspective are the inverses of the coefficients of the rectangles xzx3 ,
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z3Zi, XiXz in the equation of the conic, and the co-ordinates of the

centre ofperspective are the coefficients of the rectangles AjX3 , A^,
\i\2 in its tangential equation.

382. If !
= 0, the covariant F of Si and S2 is the polar reci-

procal of Sr with respect to S2 .

Dem. Let

=0, S3 3 Xi
z + xf + x =

;

then i
= <hi22 + <hi&33 +

F= (anan + aufl3j)*i
2

+ (3S1I + 03322)*S*
= 0.

But the polar reciprocal of Si with respect to St is (371)

022033X1* + 33U#3
2 + 0J122*3

8 = 0.

Hence in general the polar reciprocal of Si with respect to <S2 is

i8,-F=0, (991)

which reduces to F= 0, when j
= 0.

Cor. If i
= 0, any tangent to Si is cut harmonically by Sa

and/7
.

383. Ifi = 0, the harmonic envelope & of Si and St (see 286)

is the reciprocal polar of S2 with respect to Si.

The tangential equation of $ is (eq. 862)

(22 + #33)V + (S3 + 2l)V + (11 + 0)V = 0.

Hence its trilinear equation is

= 0.

Now, the polar reciprocal of S2 with respect to Si is

=
0, or * -

(an + a^ + aK) Si = 0.
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Hence in general the polar reciprocal of 82 with respect to Si is

<E>
-

2Si = 0, (992)

which reduces to $ = 0, when 2 vanishes.

Cor. If 2 = 0, the pencil of tangents is harmonic, which can

be drawn from any point of $2 to Si and $.

EXERCISES.

V
1 . Prove that the Brocard ellipse is harmonically inscribed in the Jerabek

hyperbola.

2. Prove that the conic

Va;i sin (Ai
-

0) + V#2 sin (Az -6) + Vx3 sin (A3
-

0)
=

is harmonically inscribed in Kiepert's hyperbola.

3. Construct a conic a passing through three given points A, B, C, and

harmonically circumscribed to two given conies 81, 83. (SMITH.)

CONSTRUCTION. Let Xi, Xz be the centres of perspective of the triangle

ABC, and its reciprocals with respect to Si, 82; then y passes through the

five points A, B, C, Xi, X*.

4. Find the discriminants of F and *.

Ana. AiA2 (0i02-AiA2) and 0i02 -AiA2 . (993)

5. Determine a conic a passing through two points, and harmonically

circumscribed to three given conies. (SMITH.)

6. Determine a conic <r passing through a given point, and harmonically

circumscribed to four given conies.
(Ibid.)

7. Determine a conic harmonically circumscribed to five given conies.

(Ibid.)

8. Determine a conic which divides five given segments harmonically.

(JONQUIERES.)

9. Prove that the F of the Brocard ellipse, and the conic

rfKaJ - 3
2
) + *2

2
/(3

2 -
!
2
) + *3

2
/(rtl

2 - fl2
2
)
=

is Kiepert's hyperbola.

2i
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CONICS FOE WHICH t AND 2 VANISH.

384. If we form Lame's equation for the conies

Si 3 O^Xi* + layiX&l = 0, SZ = brfC* + 2b31X3Xi = 0,

we get
U 23

2 -
#^22&3i

2 = 0.

Hence, for these conies, i
= 0, 2

= 0. Conversely, if two

conies be connected by the relations j
= 0, z = 0, their

equations can be written in the forms

0, S2
= byaX? + ZbaiX&i = 0.

Hence we have the following theorem: If a conic Si touch

two sides AB, AC of a triangle ABC at the points B, C, and

a conic S2 touch the sides BC, BA at the points C, A, then

1. An infinite number of triangles can be inscribed in either and

circumscribed to the other (equation 969). 2. An infinite number

of triangles can be inscribed or circumscribed to either that will be

antipolar with respect to the other. 3. The reciprocal of S^ with

respect to <S'2 ,
the reciprocal of Sz with respect to Slt the conic

which reciprocates Si into S2 ,
and the covariants F and $ are all

identical.

385. The three conies

= 0, &22*2
2 + MsiWl = 0, <to*i* + ICuXfo =

are such that any of them is the polar reciprocal of another with

respect to the third, if

flll&M033 = 23*31^12. (994).

This is easily verified.

DEF . ^ system of conies satisfying the relation (994) is called

a harmonic system, and the invariant (994) their harmonic in-

variant.

Cor. Any two conies Sit
Sz ,

whose invariants i, 2 vanish,

form with their covariant F a harmonic system.
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386. The invariants ^ 2 for the Brocard ellipse

v'tfi/fli + V'xzjaz + V x3ja3 = 0,
V

and the Jerabek hyperbola

sin 2,4 ! sin (Az
-Az}xzxz + sin 2AZ sin (A3

- A^x^
+ sin 2A3 sin (A l

^ A^x&z =

are all to a factor

cos AI sin (Az
- A3) + cos Az sin (A3

- A^ + cosA3 sin (A! - Az}

and its square, each of which is equal to zero. Hence the
V

Brocard ellipse, the Jerabek hyperbola, and their covariant F
form a harmonic system.

The covariant Fis

5* +
X
-L., +

X
JL = .

(2
2 -

a^} sin ZAi (3
2 -

fli
2
)
sin 2A2 (al

z -a2
z
}sin2A 3

(995)

EXERCISES.

1. Find the conic which forms a harmonic system with any two ofArtzt's

parabolae, whose equations in barycentric co-ordinates are

x-f = 4xzx3 ,
x = 4x3X1, x3

z

and prove that it is a hyperbola.

2. The conic

-
0) + V*2 sin (A z -0)+ Vx3 sin (A3

-
0)
= 0,

Kiepert's hyperbola, and

*i
2 sin (Ai

-
6) sin (A z

- A 3) + xzz sin (Az
-

0) sin (A3
-
AI)

+ x3* sin (^3 - 0) sin (A\
-A z)

=

form a harmonic system.

3. The incircle, the hyperbola, which is the isogonal transformation of

the right line passing through the incentre and circumcentre, and the

parabola

form a harmonic system.

2l2
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4. If Si, 82, 83 form a harmonic system of conies, and if ajJ^i be a

triangle inscribed in Si whose sides touch 2 in the points at, b%, a, the

sides of the triangle a^bycz touch 3 in ay, 63, 03, and the sides of a^e^

touch S\ in a\, b\, c\ ;
then the lines

23, Wa, <Vs are concurrent, and meet on Si ;

*3<ll, j|5l, 0>01 ,, ,, ., #25

oij, Ji*a, cjcj ,, ,, ,, 83.

's Exercises.)

PONCELET'S THEOHEM.

387. To find the condition that a triangle may be inscribed in

8ty whose sides touch the conies Si + kiS2 , Si + 2$2 , Si + ^Sy .

Let

Si s x? + x? + x - 2x2x3
- 2x3Xi

-
'2xiX2

- 2 1 23a?2T3

- 2^31^3X1 - 2k3aiZXiXz = 0,

St
= 2013X1X3 + 2031X3X1 + 2altXiX, = 0.

Then it is evident the line xl
= is touched by the conic

Si + hS2
=

;

for, if we put xt
= in Si + i 2

=
0, we get a perfect square.

Similarly, xt
= is touched by Si + hSt

= 0, and x3 by

Si + ^Sz = 0.

Now, forming the invariants for St + kSz
= 0, we get

A! = -
(2 + Ttifljz + 2% +

1
= 2 (023 + 81

2
= -

0*23

A2
= 20^031

Hence the required condition is

+

{02 + (kl + k + kd A,}. (996)
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Cor. 1. If a variable triangle be inscribed in a given conic St ,

and two of its sides be touched by two conies of the pencil Si + kS,,

then the envelope of the third side may be either of two conies

of the pencil. For, if #x , 2 in equation (996) be given, we have

a quadratic to determine #3 .

Cor. 2. If ki = 0, 2
=

0, and Tc3
=

k, we get, from (996) the

condition that a triangle inscribed in $2 ,
two of whose sides

touch Si, may have its third side tangential to Si + kS2 , viz.,

4M 1A2 .

Hence, eliminating Tc, the envelope of the third side is

4A1A2S1 + (!
2 - 4Ai 2) 2 = 0. (997)

388. The condition that a variable triangle may be circum-

scribed to a conic 22 ,
and have its three summits on the conies

is found, as in 387, to be

(998)

where 8^ 1} 2 , 82 are the coefficients of Lame's equations for

the tangential pencil 2!i + ^2 = 0.

Cor. 1. If &i = 0, 2
=

0, #3 = Jc, we have the condition that

a triangle circumscribed to 22 ,
and having two summits on 2i,

may have its third summit on 2i + &22 = 0, viz.,

6? - 48x02 = 4/tS1S2 . (999)

Cor. 2. If Si, Sz be the trilinear equations of 2i, 22 ,
we get

easily
6i = &i 2 , Si = W, 2

= A2 1 , 82 = A2
2
.

Hence, from (999), we get

2 -
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and, eliminating Jt between this and the trilinear equation of

2i + k^z, viz.,

we get

IGA^AI/S! + 4A2 ( 2
2 - 4A2 j) F+ ( 2

2 -
4A.J!)

8 S2
= 0,

(1000)
which is the locus of the third summit of a triangle circum-

scribed to Sz,
two of whose summits move on 81.

EQUATIONS OP COMMON ELEMENTS.

389. DBF. If A^ A2;r2 A3#3
= be the equations of the four

sides of a standard quadrilateral, the sum of the squares of these

sides equated to zero is the equation of a conic called thefourteen-

point conic of the quadrilateral. "We shall denote it by Z.

Let bcb'c' be the quadrilateral, AS Cits diagonal triangle is

the triangle of reference;

then if its sides

= 0,

= 0,

= 0,

=

Ajar,
-

be for shortness denoted by
a, /?, y, 8, respectively, we
have a + + y + SsO. Hence a* + /3

2 + y
1 + S2 = may be

written in the form

a/3 + J3y + ya + aS + J38 + y8 =
0,

since we can subtract (a + ft + y + 8)
2 =

; or, in the form

Py + aS + (/3 + y)(a + 8)
= 0.

Or, since a + 8 = -
(ft + y), in the form

Hence Z has double contact with fly + aS = 0, the chord of

contact being ft + y = ;
that is, has double contact with a
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conic passing through the extremities I, I', c, cf of two diagonals

of the quadrilateral, the third diagonal being the chord of con-

tact
;
but a conic passing through two pairs of opposite summits

of a complete quadrilateral has the third pair as harmonic con-

jugates. Hence we infer that each pair of opposite summits of

the quadrilateral are harmonic conjugates with respect to-JZ.

Again, forming the sums of the squares of

we get

Hence the triangle ABC is antipolar with respect to Z
t
and

therefore each side is cut harmonically. Hence we have the

following theorem: The fourteen-point conic cuts the diagonals

of the quadrilateral in the double points of the three involutions

aa',C-, W, CA; cc', AS.

390. If we eliminate 8 from a2 + ft* + -f + 82 = by means of

a + ft + y + 8 = 0, the equation of Z becomes

a? + ft
2 + y

2 + aft + fty + ya = 0.

Hence Z meets y where it meets

a2 + 2 + a/3
= 0.

Again, the product of the three lines c'a, cd, c'b is aft (a + ft},

say <(a, /3)
=

; and, forming the Hessian of this (see Salmon's

Algebra^ 4th edition, p. 183), that is,

we get
a2 + j3

2 + aft.

Hence, if Z, M be the points in which Z meets the side y of

the quadrilateral, the auharmonic ratios (Va'cL\ (Va'cM] are

the imaginary cube roots of unity, and similar properties hold

for each of the remaining sides of the quadrilateral. Hence we

see that Z passes through fourteen remarkable points, namely,

two on each side, and two on each diagonal.
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391. It is required to find the equation of the four common

tangents of the conies

8l
= ax

* =
0, Sa = I* = 0.

Let 2 22 be the tangential equations of Sit St ; then two
conies of the pencil 2 t + 22 can be described to pass through

any given point. For, if A 1} A2 be the discriminants of a,
2
, J,

2
,

the trilinear equation of 2i + ^22 is

Since this is a quadratic in k, we see that two conies of the

pencil 2i + 22 can be described to pass through any given

point; but if the given point be on any of the four common

tangents of Sl and Sz ,
these conies will coincide. Hence the

quadratic in k will be a perfect square. Hence the equation
of the four common tangents is

^2 -4A1A2o,
2
J,

2 = 0. (1001)

Cor. Since the equation (1001) is of the form IP - LM= 0,

it represents a locus touching the conies ox
2 =

0, I* = in the

points where they meet F. Hence F passes through the eight

points of contact of the conies with their common tangents.

392. If the conies Slt S2 of 391 be referred to their common

antipolar triangle, their equations will be of the forms

Si = u#i
2 + (tyzX-? + a33x3

z = 0,

St = a?j
2 + a:2

2 + ar3
a - 0,

and then

033)xf + flas ( + u)*
2 + 033(011 + #22) #3

2 = 0.

These substituted in equation (1001), the equations of the four

common tangents of $1 and S2 will be found to be the product of

the four lines

-
033) *2 </0*2(033

-
n) #3 A/ 33 (ii

-
022)

= 0.

Hence the quadrilateral formed by the four tangents is a standard
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quadrilateral, and the equation of its fourteen-point conic, which

we shall call the fourteen-point conic of the two given conies,

$i> #2, is

an (022
-

033 )X? + 022 (On
- Ou)#2

2 + 033 (11
~

<*22)^ = 0.

(1002)
Cor. 1. The fourteen-point conic of two given conies is har-

monically circumscribed to each.

Cor. 2. If the conies 8l} Sz he given in the forms

= 0, = 0,

their fourteen-point conic will be

S0H&11 (022^33
-

033&22)#1
2 = 0. (1003)

Cor. 3. The fourteen-point conic of 81, S2 in terms of 81} S2r

and F, is

2A2 C!
2 - SA^) 81 + 2Ai ( 2

2 - 3A2 i) Sz + (9&A2
- A)F= 0.

(1004)

393. To find the tangential equation of the four points common

to the conies

Sl
= 0/ = 0, 8Z ^ I? = 0.

The condition that the line Xx = shall touch 2 = 0, is

021,
= 0.

If in this we substitute u + kbu , 12 -t- ^^12, &c., for on>

13 , &c., we get the condition that \x shall touch Si + kSz = 0,

viz.,

5i + A$ + #% =
0,

where Si, S2 ,
and <E> are, respectively, the tangential equations

of Si, $2, and the envelope of the line which cuts them harmo-

nically. Now, since this equation is a quadratic in k, two conies
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of the pencil Si + kS2
= 0, can be described to touch X, = ;

but if X, passes through one of the four points common to Si

and $2 it is evident that these two conies will coincide. Hence

the equation of the four common points is the discriminant of

Si + ** + *%
equated to zero, viz.,

$2 - 4SA = 0. (1005)
394. If

Si s anx? + 022#2
2 + a^x? = 0, S2 x? + #2

2 + x? = 0,

we have

1 ttnz + On022X3
2
=0, S2 Xi

2 + V +V =
0,

* = (o + 033)V + (033 + On)V + (on + 022)V =
;

and, substituting in equation (1005), we find the four common

tangents to be

On Xa^/ =0.

(1006)
If we form the sum of the squares of these equations, we get

(OM
-

033) X^ + (033
- on )V + (on

- o22)V = 0.

(1007)
Or, in point co-ordinates,

(ii
~ a)(n -

033) X? + (022
-

033X0,2
-
On) #2

Z

+ (33
-

Oll)(033
-

022) #3
2 = 0.

(1008)
This is the fourteen-line conic of the given conies.

Cor. 1. The eight tangents to two conies at their points of

intersection envelope another conic <. See equation (1005).

Cor. 2. The fourteen-line conic of two conies is harmonically
inscribed in each.

Cor. 3. The fourteen-line conic of two conies Si, S2 in terms

of Si, St, and F is

- 3F= 0.

(GUNDEIFINGER.) (1009)
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EXERCISES.

1. Find the equation of the fourth common tangent to the conies

V#i sin AI + #3 sinAz + V^sin^s = 0,

Va;i cos AI + V#2 cos Ay, -f V#3 cos ^(3 = 0.

Am, Xilaw(A2-Aa) + x2lsw.(A3-Ai)+x3law(Ai-Az )
= 0. (1010)

2. The covariant F of the two conies of Exercise 1 is the nine-point

circle.

3. The contravariant * of the same conies is

Xi
2 sin2 (A2

- A 3) + X2
2 sin2 (^3

-
AI) + X3

2 sin2 (Ai - AZ)

+ 2X2X3 sin AZ sinA3 + 2X3X1 sinA 3 sin AI + 2X1X2 sin AI sin Az 0.

(1011)

4. Find the equation of the four tangents to Si, where $2 intersects it.

Let the points of intersection he A, B, 0, D, and let '2 he the polar reci-

procal of 2 with respect to Si ; then the tangents to Si at A, , C, D will

be common tangents to Si and S'z. Thus we find, if

O -. * I ._ 2 i , ** 1 A O . <> . .. *> i 9 f\

S>1 = ttuXi' + ClZZXz ~r #33#3 = "> O2 = Xl + Xz T *3 := W>

the four common tangents to he

(1012)

The product of the four tangents in terms of Si, Sz, and .Fis

(0i<Si
- Ai^)

2 - 4Ai/Si (0251
-
J) = 0. (1013)

5. State the special lines which the fourteen-line conic of a quadrangle

touches.

ANTIPOLAE TRIANGLE.

395. Let Si, S2 oe two conies given by their general equations.

It is required to reduce them to the forms

respectively.

SOLUTION. Since

Si diiXi* + OzzX^ + <h3X3 =0, $2 = Xi + JC2 + X3
= 0,
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the discriminant of Si - &S2 is equal to the discriminant of

i* + X? + X3
8
)

Hence an , a^, 033 are the roots of Lame's equation, and are

therefore given. Again, since

J, S2
=

the covariant F of ^ and /S2

= n (022 + ) -^i
2 + 22 (s3 + On) -Xa

8

Hence we have the three equations

f + OmXf + 033X3* s Si,

(33 + ll)^
Hence (

- ^(fln - a) X,* au^ + S283^8 - -^, (1014)

- F, (1015)

l
~ -^ (1016)

Hence the squares of the sides of the antipolar triangle of Si, &
are covariants.

Cor. By adding the equation 1014-1016, we get the equation

of the fourteen-line conic of

396. Since the sides of the antipolar triangle are expressed in

terms of Si, S2 ,
and F, it follows that all the covariants of Si,

S2 can be so expressed, hut all cannot be expressed rationally in

terms of these. For example, the conies (985), (987), (988).

Again, the conic which reciprocates Si into S2 may be any one

of the four

s
2 = 0,

either of which cannot be expressed rationally in terms of Si,
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$2, F', but from equation 1014-1016, we see that their product

can, viz., this is

0, 33 #22,

3S, 0, On,
= 0.

,

(1017)

MUTUAL POWER OP TWO CONICS.

397. If Si-Z! = 0, i-Z2
= (where S = x? + x2

z + tf = 0,

and Z lt Z2 are lines) be two conies having double contact with

the same conic, or, for shortness, say inscribed in 8
;
then

denotes a conic passing through the two points in which the

common chord LI - Z2 = meets them, and forming the discri-

minant of

after clearing of radicals, we get

(1
-

Sz) P + 2 (1
-

)
k + 1 - #! = 0, (1018)

where Si, S2 denote the powers of the poles of Z 1} Lz with

respect to 8, and J212 the power of the pole of Z x with respect

to LZ. Now, since the equation (1018) is of the second degree

in k, two line pairs can be drawn through the intersection of the

conies
8 - L? = 0, 8 - LJ =

with their common chord Zx
- Z2

= 0, each having double con-

tact with 8. It is evident these line pairs will coincide, if

Zi - Z2 meet 8 - L? in consecutive points ;
in other words, if

S-Li* = Q touch S-Lzz = Q. Hence the condition of contact

of 8 - L? and 8 - Z2
2

is the discriminant of (1018) with
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respect to k. Therefore the tact invariant of 8 - L^ = 0,

S - LJ = is

(1- JR12)
2 -(1-51)(1-^) = 0. (1019)

"We should have got the same result if we had worked with

the equations

but with either of the forms

Si T L, + k (SJ Za) = 0,

the result would be

(1 + )*
-

(1
- SO (1

- S2)
= 0. (1020)

Hence there are two tact invariants for two conies inscribed in

the same conic.

398. If we put

1 - Ru = va-SOa-S,) . cos ft,

and denote the roots of equation (1018) by klt fa, we get

,"*' = tyfc. (1021)

Similarly, if we form the discriminant of

Si* , + *(* Z,) = 0,

denote the roots of the resulting equation in k by 3 , 4 ,
and put

SiXl-SO cos^
we get ^ =^4. (1022)

Now, if ft
=

7r/2, we have, from (1021), fa/k, = -
1, and the

chords of contact with S of the two line pairs which can be

drawn to touch S through the intersection of Zt
- Lz

= with

S-I>2 form a harmonic pencil with I>i and Z2 . Similarly, if

ft
=

7T/2, the chords of contact with S of the line pairs through

the intersection of Li + I* with S-L? touching S form a

harmonic pencil with L and Z3 . Hence it appears that what
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corresponds in the geometry of two conies inscribed in the same

conic to two circles cutting orthogonally are two conies whose

angle i/r,
which we shall call their anharmonic angle, is right,

and by an extension of the term we shall say that the conies

cut orthogonally.

399. DEF. We shall call 1 - JRK the mutual power of the conies

SI ^ = and Si Z2
= 0,

where the signs are either loth plus or loth minus, and 1 +

mutual power of

S* T A = and SI Zz
= 0,

the

where the signs are different.

The mutual power of two conies inscribed in the same conic

may also be called their orthogonal invariant, since its vanishing

is the condition of their cutting each other orthogonally.

FBOBENITTS'S THEOREM.

400. If Ci, Ct ...C6 ; C\, C"2 . . . C"6 be any two systems

of five conies inscribed in the same conic S, and if the mutual

power of any two Cm ,
C'u be denoted by mn', then

11', 12', 13', 14', 15',

= 0. (1023)

This is an extension to conies inscribed in the same conic of

the fundamental theorem in a Memoir by Herr G. Frobenius,
"
Anwendungen auf die Geometric des Maasses "

Crelle's Jour-

nal, Band 79, pp. 185-247.
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Dem. Let

8 a
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= 0, ,
&c.

then, multiplying the determinants

1 #i tfj #3
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= 0.

= 0.

402. If the second system of conies coincide with the first,

we have for any five conies inscribed in the same conic

1, cos 12, cos 13, cos 14, cos 15,

cos 21, 1, cos 23, cos 24, cos 25,

cos 31, cos 32, 1, cos 34, cos 35,

cos 41, cos 42, cos 43, 1, cos 45,

cos 51, cos 52, cos 53, cos 54, 1

(1025)

Cor. 1. The condition that four conies should cut a fifth

orthogonally is

1, cos 12, cos 13, cos 14,

cos 21, 1, cos 23, cos 24,

cos 31, cos 32, 1, cos 34,

cos 41, cos 42, cos 43, 1,

(1026)

Cor. 2. If the conic C5 touch the other four, the last row

and the last column of the determinant (1025) become units.

Hence, by subtracting each of the first four columns from the

fifth, we get a determinant which is equivalent to the follow-

ing:

0, sin2
(12),

sin2 (13), sin2 % (14),

sin2 (21), 0, sin2 (23), sin2 (24),

sin2

(31), sin2 (32), 0, sin2 (34),

sin2 (41), sin2 (42), sin2 (43),

(1027)

or the product of the four factors

sin(14)sin(23)sin(24)sin(31)sin(34)sin(12) =
0,

(1028)

which is the condition that four conies should be tangential to a

2K

=
0,
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fifth. If we substitute for sin (14), &c. (401), this equation

becomes, after clearing of fractions,

two similar terms got by interchange of suffixes = 0.

(1029)

403. To find the equation of a conic inscribed in a given conic S,

and touching three given conies C
1} C2 ,

C3 ,
also inscribed in S.

Let the equations of C
lf (72 ,

C3 be Sk = ax ,
Sl = bt , Sk = ct,

respectively, and W be the required conic. Take any point

z'u s'zj #'3 on W, and let Ct denote the tangents from x\, x'2t x'3

to S. Then
. x

Oi S o 2

denotes a conic having double contact with S and touching W.

Hence the equation (1029) holds for the four conies Clt C3 ,
C3 ,

Ct ;
and it is easy to see that ^4

= 1
,
and

_u

Hence, making these substitutions in (1029), and omitting

accents, &c., the equation of W is

(1030)

This equation was first obtained by me in 1866 by considera-

tions of Spherical Geometry. An independent proof, founded on

the properties of quartic curves having two double points, was

given in my Bicircular Quartics, read before the Royal Irish

Academy in 1867. The foregoing, by the method of mutual

power is, perhaps, the simplest that has been yet given.
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The allied but different problem of describing a conic having
double contact with a given conic S, and touching three other

conies each having double contact with S, was previously solved

by Professor Cayley, Crelle, vol. xxxix.

OBTHOGONAL CONICS.

404. The result of the operation

d d d

dx l dx-j, dx3
'

performed on the conic Ss-ax = is a conic orthogonal to Sk - a,..

For, performing the operation and clearing of fractions, we

get aaSk ax = 0, and the orthogonal invariant
( 399) of this

and /Si - ax = vanishes, which proves the proposition.

405. If S* af = 0, Sh lx = 0, SA cx = be three conies

inscribed in S, it is required to find the equation of a conic /
cutting them orthogonally.

Let 0,1, 02, 03 be the co-ordinates of the pole of 7"with respect

to S
;
then denoting for shortness the given conies by Wlt W2 ,

W3 , respectively, we must have
( 404)

dWl dW^ dW
l

i r- + "2-7 + 3^ =
>

dx-L dx-i dxz

dxz

0-1 + 2 a
dW * =0
dx*

Hence, eliminating a
ls 02, a3 ,

the required conic is

d,Wl &W^ dW,
dx

AW, dTTo

dOCo, Q/tK't

= 0.
(1031)

2x2
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Substituting for W, W2 ,
W3 their values, and taking into

account the various combinations arising from the double signs

in

Si x =0, Siix =0, Si<r, =
0,

we get four conies orthogonal to the conies

"We shall denote them by J
t J\, /2, /s, respectively. If in

(1031) we put S^ - ax ,
4 - bx,

S* -
c, for W^ W^ W3 we

easily get

= 0. (1032)

/i, /2, /3 ar^, respectively, obtained from this by changing

the signs of the o's in the second row, of the 's in the third,

and of the e's in the fourth row.

406. If the minors of the determinant (0A4) be denoted by

the corresponding capital letters, we see that the co-ordinates of

the pole of the chord of contact of J and S are

At + Si + Clt A2 + B2 + C2 ,
J.3 + 3 + &,

or 2-4i, 2-^2) 2^3, respectively; but these are evidently the

co-ordinates of the point of concurrence of the common chords

a, - bt ,
lx

- cx , c,
- ax of the three conies

Hence we have the following theorem : The poles of the chords

of contact of J, J^ J2 ,
J3 with S are the four radical centres of the

conies
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407. The polar of the point S-4i, S-4 2 , 2^ 3 with respect to

S - (a^ is easily found to be the determinant

=
0, (1033)

and this is evidently the common chord of J and 8 -
(*)*

Hence we have the following construction for the conies J, /i,

t/2, 1/3 exactly analogous to the method of describing a circle

cutting three circles orthogonally, viz. : From any radical centre

draw tangents to the conies

then the six points of contact lie on the corresponding ortho-

gonal conic.

408. To find the locus of the double points of the net

Xi (Si
- O + X, (Si

-
&*) + X3 (54

-
<?,)

= 0.

If

MS4 -
,) + X2 (5J

-
i,) + X3 (54

- cx)
=

has a double point it must consist of a tangent pair to 5.

Hence it must be of the form

v

Therefore, putting 5 s y^^'i
2 + #V + ^3

2
,

we have

Xtax + XzJ, + A3cz
=

(\! + X-2 + A3)(a^1a?1 +^2 + x'3x3}/

Hence, comparing coefficients, we get

a^O + A2 (3^ -
a/0 + X3 (cJL - x1

,}
=

0,

o'a) + X2 (J8 Z2
- rr'2) + X3 (czR -

x'l)
=

0,

z'3 ) + X2 (*3JK - *'3 ) + X3 (c35 - z'3)
= 0.
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And eliminating X
lt
A2 ,

X3 ,
we get

a^R -
x\, b^R - x\, c^R - x\,

a^R - x'2 ,
bzR - x'2 ,

c2R -
x'z,

a*R - x'3 ,
b3R- ^3, c3R - x'

3t

= 0.

If we subtract the second column from the first, the third from

the second, we get a determinant which may he written

-
x\,

- X'

= 0.

Hence, dividing hy R2
, expanding, and putting Si for R, and

omitting accents, we get

2-2 (aA) *3
= 0,

which is evidently the conic J. Hence the locus of the double

points of

^ (Si
-

a,) + ^(Si -
i.) + A3 (Si -<?,)

=

is a conic cutting 5* - a,, Si - &,, Si - X orthogonally.

JACOBIANS.

409. Given three conies, Sl} S2 ,
S3 ,

it is required to find the

locus of a point whose polars with respect to these conies are

concurrent.

If we denote the differentials of Sr with respect to #1, x2 ,
x3 ,

respectively, by Sr
(1

>, Sr
(2)

,
Sr

(3)
,

it is evident we shall have to

eliminate a/lt x'z, x3 between three equations representing the

polars of the point.

Thus we get the determinant

=0. (1034)
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If any tliree ternary functions/i, f?, /3 be given, the determinant formed

with their first differentials was much employed by JACOBI, and called by
him their functional determinant. This name has been altered by SYLVESTER

to that of Jacobian, in honour of that great Mathematician.

410. The Jacobian of three conies is the locus of the double points

on lines cutting the conies in involution.

Dem. Let A be any point of the Jacobian of Slf S2 , S3 ,
or

say J(Si, S2 , 83) ; then, by definition, the polars of A are con-

current. Let tbem meet in B then the polars of meet in A.

Hence B is a point on the Jacobian
;
and since A, B are conju-

gate points with respect to each conic, the line joining these

points is cut in involution by the conies, and A, B are the

double points of the involution.

The following is another geometrical definition of J(S\, S2) S3),

viz. : It is the locus of the double points of all the conies of the net

AiOi + A2o2 + A3o3
= 0.

For the co-ordinates of the double points must satisfy the

three equations

AA' 1
' + A2S2

(1) +W> = 0, AiSi (2) + Xg&w + A3S3
w =

0,

X^w + A2S2
(3 > + A3S3

( 3 > =
;

and, eliminating A1? A2 ,
A3 ,

we get J(Si, S2 ,
S3)

= 0.

411. If

S l
= ax

z = 0, 2
= I? = 0, S3

= c,
2 =

0,

then

J(Si, S9 , SJ = (aj>&) ax .lx .cx = 0, (1 035)

where (i^2c3) is an abbreviation for a determinant.

Hence J(8i, S2 ,
S3 ~)

is a curve of the third order. It sometimes

breaks up into a line and a conic, and sometimes into three

lines, viz. 1. If Sit Sz ,
S3 have two points common, say M,

N, then the polar of any point P, on MN, with respect to each

of the conies Si, S2 ,
S3 passes through the harmonic conjugate

of P with respect to M, N; therefore the line JZVis a part of

the Jacobian, which must therefore break up into a line and a
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conic. This explains why the Jacobian of three circles is a

circle, viz., the three circles have the cyclic points common,
and the Jacobian is their orthogonal circle.

2. If one of the conies, say S3 ,
be the square of a line Z2

,

then tT(Si, S2 ,
Z2

) contains L as a factor. Hence J(8^ Sz ,
Z2

)

breaks up into a line and a conic.

In this case, if I, be the line at infinity, J(Si, S2 ,
Z2

)
consists of

the line at infinity, and of the locus of the centres of all the conies

of the pencil Si + kS2
= 0.

For, if a/!, #'2 ,
#'3 be the co-ordinates of the centre of St + kS2>

Xl (Si^ +W) + ^(8^ + W>) + *,(&<> + *S8
< 3

>)
=

(where, after differentiations, xflt x'2 ,
x'3 are substituted for #j,

#2 ,
#3) must represent the line at infinity ;

that is,

%i sin AI + #3 sinAz + x3 sin A3
= 0.

Hence, if X denote some constant,

SiW + kS2
w = \ sinA lt S^ + kSjV = X sin A t ,

Hence, eliminating k and X, we get

sin -4,,

sin A5

= 0, (1036)

which proves the proposition.

As a particular case, if S2 be any circle whose centre is at a

point hk, and Z the line at infinity, then J(Si, Sti Z) is the

Apollonian hyperbola of the point hk.

3. If Si, S2 ,
S3 have these points common, J~(Si, S2 ,

S3 ~)
con-

sists of the three lines joining these points.

4. If Si, S2 ,
S3 have a common autopolar triangle, J(Si, S2 ,

S3 ~)

denotes the three sides of the triangle. This will be evident by
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forming the Jacobian of three such conies. Thus the Jacobian

of Si, S2 ,
and their covariant F consists of the three sides of the

autopolar triangle of Si, S2 . If

Si = anx? H- a^x? + tf^2 =
0, S2

= x? + x2
* + x3\

then J= (an
- a22 ) (am -

a^} (a33
- an} X]X&Z . (1037)

Hence
( 395),

t/2 + (uSi + a22a33S2
- F) (0i + %3nS2

- F) (a&Si

+ aua2z82 F) =
0,

or J^^F3

+ SiS2 {
A2 (2A! 2

-
j

2
) /Si + A 1 (2A2 1

-
2
2

)
S2 }

.

(1038)

412. To find the envelope of a line cutting three conies Si, S2 ,
S3

in involution.

SOLUTION. Let S:
= ax

2 =
0, S2

= bx
2 = 0, S3

= cx
* = be

the conies
; through Si, S2 draw any conic liSi + ?2S2 cutting

S3 in the point pairs M, N\ M', N'. Join MN, M'N', and

produce. Now, since MN is a line cutting three conies Si, S2 ,

11S1
+ 12S2 of a pencil, it is cut in involution by them. Hence

J/7Vis cut in involution by Si, S2 ,
S3 ;

and similarly for M'N'.

Let the equations of MN, M'N' be A*, X',.
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Now, since the line pair A, . A'x pass through the intersection

of the conies liS\ + /2S2
= and S3

= 0, we must have for some

value of L

that is, we must have

^a,
2 + I2b,

z + I3c,
z s A'2a;2

0. (1039)

Hence, comparing coefficients, we have six equations of the

type

liau + lj>n + l3Cn - \i\\ = 0.

From which, eliminating /,, 12 ,
/;t , A',, A'2 ,

A'3 ,
we get the deter-

minant

<*n> n> SID AI, 0, 0,

OM, JM, , 0, A2 , 0,

*33> ^33> ^33? 0> 0, A3

2023 , 2i23 ,
2r23, 0, A3 ,

A2 ,

2^31 ,
2J31 ,

2^31 ,
A3 , 0, A,,

2a12 ,
2i12 ,

2c12 ,
A2 , Aj,

This is called the HEHMITK envelope of the net liSi + l^Sz + 13S3 .

It is evident the same equation is the envelope of the line M'N'
;

but MN. M'N', or A, . A'x denotes a line pair of the net JiSi + 1ZS2

+ ^83. Hence the Hermite curve is the envelope of all the line

pairs of liSi 4 12S2 + 13S3
= 0.

Cor. 1 . If the points Jf, ^coincide, J/JV^willhe a tangent to S3 ,

and the point of contact will be a double point of the involution.

Hence it is a point on J(Si, S2 ,
$3).

Therefore the points of inter-

section of ./"with S3 are the points of contact of the conies of the

pencil /i$! + /2 <S2 which touch S3 ;
but /being of the third degree,

and S3 of the second, there will be six points of intersection.

Hence six conies of the pencil ^S^ + Z2 2 touch S3 .
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Cor. 2. The locus of a point whence tangents to the conies

1, S2 ,
S3 form a pencil in involution, is

--ll)

-d-22.

->11>

^22> 62

#!, 0, 0,

0, #2 , 0,

2^ 23, 2 23 , 2^3, 0, ar3 ,
#2 ,

2^31, 2^3!, 2^, xz , 0, a?,,

2^ 12 ,
2512 , 2^2,^2,

Cor. 3. The Hermite curve of S1} 82 ,
83 in Aronhold's nota-

tion is the product of the three determinants

= 0. (1040)

a* Xs

= 0. (1041)

413. In the same manner as we have the Jacohian and the

Hermite curve of three conies in point co-ordinates, so we can

have a Jacobian and a Hermite curve of three conies in line co-

ordinates. Thus the Jacobian is either the envelope of lines

whose poles with respect to the three conies are collinear, or

the envelope of the double lines of pencils in involution formed

by pairs of tangents drawn to the conies
;
and the Hermite curve

is either the locus of points whence tangents to the conies form

a pencil in involution, or the locus of all the double points of

the tangential net formed by the three conies.

414. We have seen ( 380, Cor. 5), that if 2i, S2 , 23 be the

tangential equations of any three conies, each harmonically in-

scribed in each of the conies Si, S2 ,
83 ,

then every conic of the

tangential net l^i + l^z + ?s23 is harmonically inscribed in every

conic of the trilinear net piSl +^2^2 4 pA- Now, suppose

^1^1 +^2^2 +^3^3 =

to break up into a line pair \x . \'x intersecting in P, then each
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of the conies 2i, 22 , 23 will be harmonically inscribed in X, . X'.

Hence \x , X', are harmonic conjugates to the pairs of tangents

from P to the three conies 2i, 22 , 23 . Hence the tangents from

P to 2i, 22 , 23 form a pencil in involution, and A,, \'x are the

double lines. Hence the locus of P is the Jacobian of Si, S2 ,
S3 ,

and also the Hermite curve of 2i, 22 , 23 . Also the envelope of

Xx, X', is the Hermite curve of Si, Sz ,
S3 ,

and the Jacobian of

2i, 22 ,
23 ; or, as they may be stated,

(1042)

7(2A23)
-

CONTRAVARIANTS.

415. The equation \f + V = is the product of the two

imaginary factors Xt + t'Xj
= 0, Xj - *Xa = 0. Hence the factors

being each satisfied by the co-ordinates o, o, are the equations

of the cyclic points ( 62, 72). In other words, X^ -t- X2
2 =

is the condition that the line \ix + \^y + X3
= should pass

through these points. Now, if 2, 2' be the tangential equa-

tion of two conies, the discriminant of 2 + 2' is

and the discriminant of 2 + k(\^ + V) i

but if 2 = be the tangential equation of a conic in Cartesian

co-ordinates, an + a^ = is the condition that it represents an

equilateral hyperbola, and anOyt - &V? = the condition that it

represents a parabola. Hence, if in any tangential system of co-

ordinates we find the invariants of a conic, and the cyclic points,

z
= is the condition of the conic being an equilateral hyper-

bola, and t
= for a parabola. Then, since

Xx
2 +V + Xg

2 - 2X3X3 cos AI - 2X3X, cosA t
- 2XA cosA 3

*
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is
( 62) the equation of the cyclic points in trimetric co-ordi-

nates, if we form Lame's equation for 3 + &O, we get the con-

dition for an equilateral hyperbola

#11 + #22 + %3 - 2rt23 cos AI - 2rt31 cos A2
-

2fi2 cosA3
= 0.

(1043)
For a parabola,

An sin2-4 : + AZZ sin2-42 + A33 sin2^ 3 + 2A23 sinAz sin A 3

+ 2A 3 i sin AS sin A l + 2An sin A l sin ^ 2 ,
or (-4sin ^)

2 = 0.

(1044)

EXEBCISES.

1. The condition that a\\x\
z

-|- 22#2
2 + tfss^s

2 = should be an equilateral

hyperbola is a\\ + azz + 33 = 0. But this is the condition that the co-

ordinates of the incentre and excentres should be on the curve. Hence

the locus of the incentres and excentres of all autopolar triangles of an

equilateral hyperbola is the hyperbola itself.

2. The condition that 23#2#3 + si*3#i + a^xiXz = should be an equi-

lateral hyperbola shows that an equilateral hyperbola which passes through

the summits of a triangle passes through its orthocentre.

3. If Si, Sz be equilateral hyperbolae, every curve of the pencil Si + kS*

is an equilateral hyperbola.

4. The conic #i
2
/(fl!2

2 -
s
2
) + Z2

2
/(s

2 -
i
2
) + #3

2
/(i

2 -
2
2
)
= which

reciprocates the Brocard ellipse into Kiepert's hyperbola is a parabola.

416. The covariant F of any conic, and the cyclic points is the

orthoptic circle of the conic.

For F= is the locus of points whence tangents to the conic

form a harmonic pencil with lines to the cyclic points. Hence

the tangents must be at right angles, and therefore F= is the

orthoptic circle. Its equation is got by substituting for u ,

J?22> &c., in equation (990) the coefficients of A^, A^
2
, &c., in

the equation

O = \!
2 + Aa

2 + X3
2 - 2X2X3 cosA i

- 2\3\i cosA 2
-

2,\i\z cosA s
=

0,
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which denotes the cyclic points. Thus we get the orthoptic

circle of a* = to be

2 (A22 + A& + 2AM cosA
!) Xi

z

+ 22 (An cosAi -Au coaA2
-A 13 cos A 3

- A^^XS = 0.

(1045)

To show that this equation represents a circle, it may be

written in the form

sin A-L sin A2 sin A3 . xs{nA [x t (A2Z + A&
+ 2^23 cos .4i)/sin AI + . . .

\

=
(-^sin^)

2
(#2*3 sin AI + x3x sin A* + x&z sin A3).

(1046)

If a* = be a parabola, (AAaji }
z =

0, and the locus reduces to

2J?,(^22 + An + 2^23 cos^ 1)/sin^ 1
= 0, (1047)

thus giving the equation of the directrix.

EXERCISES.

1. The orthoptic circle of atz + kbfz = is the net

Ca + ty + &Cb=0, (1048)

when
<|/
= is the orthoptic circle of the conic which is the envelope of lines

cutting ax - and i*
2
harmonically.

2. Prove that the directrix of

*1
2
/(02

2 - as
2
) + *2

2/K -
i
2
) + *3

2
/(i

2 -
a
7
)
=

is the diameter of Brocard.

3. Prove that the directrix of

i*i
2
/(2

- a3] + azxt
z
l(a3

- a } ) + fl3*3
2
/(i

-
2)
=

is the line joining the incentre and circumcentre.

4. If Si, 82, S3 he the differentials of the conic S with respect to x\,

ii #3) prove that its orthoptic circle is

(CATHCART.)
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Foci.

417. The discriminant of 2i + 52
= is

A,
8 + J&AX, + #A8 ! + 7i;

3A2
2

.

This equated to zero furnishes three values of k which, when

substituted in Si + 22
=

0, gives the equations of the thn-e

pairs of opposite summits of the complete quadrilateral formed

hy the common tangents of 2^ S2 . If 22
= denote a point

pair, say /, J, A2 vanishes, and we have a' quadratic. This

gives two values of k which, when substituted in 2i -f &22
=

0,

gives the two pairs of opposite summits of the quadrilateral

formed by the tangents from /, /to 2. Hence, if /, J be the

cyclic points, these summits will be the foci, one value of k

corresponding to the real foci, and the other to the imaginary

or antifoci.

418. When 2J2 = denotes the cyclic points, Si + 22
= is the

tangential equation of a conic confocal with 2i- Hence, form-

ing the corresponding equation in point co-ordinates, we get the

general equation of a conic confocal with S^ Thus we get

where F denotes the orthoptic circle of Si, and 0j the condition

that Si should be a parabola. Hence, forming the discriminant

with respect to k, the equation of the foci is

F2 - 4A 1 1 1
= 0. (1049)

If $! be given in Cartesian co-ordinates, the equation of the

foci is

{^33 (& + f} ~ ZAnX - lA^y -f Au + An\* = 4A 15 l
.

(1050)

This is obtained by putting A.
2 + p? for 22 .

419. If Si = be a parabola, and 22
= the cyclic points, i

vanishes, and Lame's equation reduces to A! + Ic 2
= 0. Then

eliminating k between this and 2i + 22 ,
we get

0. (1051)
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Hence, for Cartesian co-ordinates, the equation of the foci is

(#11 + #22) (Ai 1V + AnXJ + 2^23X2X3 + 2^31X3X1

which must resolve into two factors, one of which denotes the

focus at infinity, and the other the finite one. One factor must

obviously be A^\i + ^23X3 = 0, and the other, which represents

the finite focus, is

u - A! } /A sl

Hence the co-ordinates are

(an

(1052)

For trimetric co-ordinates, since the co-ordinates of the focus

at infinity are the differentials of j or (-4 sin ^)
2 with respect to

3 , say i
(1)

, !
(2)

, 0/3)
,
we get

(1053)
Thus the co-ordinates of the focus of the parabola

*iY(*2
2 -

3
2
) + *2

2
/(*3

2 -
i

2

) + *3
2

/(i
z -

2
3
)
=

are

(1054)

And the co-ordinates of the focus of

i*iV(*
-

s) + a&fKa* -
i) + Osa?3

2
/(i

-
>)
=

are

sin2 (^4 2
-
^,), sin2 (^,

-
^,), sin2 ^ (^,

- -48).

(1055)

These are the co-ordinates of the centre of the hyperbola
which is the isogonal transformation of the line joining the

incentre and circumcentre of the triangle of reference.
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DOUBLE CONTACT.

420. If two conies S^ S2 have double contact, their covariant F
is a conic of the pencil liSi + 12S2

= 0.

Dem. Let the triangle formed by the common tangents and

the chord of contact be the triangle of reference
;
then the

equations of Si, S2 may be written

= 0, 2bnXiX2 + b33xj =
0,

and the covariant F will be

which is of the desired form. The same thing may be seen

geometrically, since JP intersects Si, S2 ,
where they are touched

by their common tangents, that is, where they meet their com-

mon chord, it passes through the points common to Si, S2 ,
and

belongs to the pencil ^$j + 12S2
= 0.

421. If Si, S2 have double contact, the Jacolian of Si, S2 ,
and F

vanishes identically.

(1056)

And since
( 420) F= 1& + 12S2 ,

if we multiply the first

column of this determinant by ll} the second by 12 ,
and subtract

their sum from the third, the remainders vanish. Hence the

proposition is proved.

Second Identical Relation. If the conies Si, S2 have double

contact, Lame's equation has two equal roots, and the double

root substituted in Si + IcS2
= gives the square of the chord of

contact. Therefore, for that value of k the reciprocal of Si

2L
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vanishes identically. Also the differentials of Lame's with

respect to k vanish. Hence we have

Si + fa + #Sa =
0,

! + 2k 2 + 3 2A2
= 0,

3Ai + 2/&0J + # 2
= 0.

Hence, eliminating k, we get

!,
202 3A2 ,

2

(1057)

Third and Fourth Identical Relations. If two conies have

double contact, their reciprocals have double contact. Hence

if we employ 2i, 22 instead of S
lt
S2 ,

we get the two following

identities :

)
, 22

(2)
,

2 ,

3A 1F

,
3A 2 ,

, 0!

(1058)

(1059)

CONICS CONJUGATE WITH RESPECT TO A. QTJADBILA.TERAL.

422. DBF. A conic is said to be conjugate with respect to a

quadrilateral when the polar of any summit passes through the

opposite summit.

Let the pairs of opposite summits

be A, A'; , B'; C, C"; and ax
z =

0,

the conic referred to the triangle

ABC, then the polar of the point

A is

0.
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And since this must pass through A', A' is the intersection of

anXi + anxz + i3#3 = and x
v
= 0,

and therefore the intersection of

a lzxz + 0is#3 = and Xi = 0.

Hence A' is the intersection of

+ #3/012 and #i.

Therefore the line

#3/012 =
'

passes through A'. Similarly, it passes through B' and '.

Hence the equation of A'B'C' is

#1/023 + #2/#31 + #3/012
= 0.

A'B'C' is the axis of perspective of the triangle ABC and its

polar reciprocal.

423. The equation of the conic can be expressed symmetrically

in terms of the equations of the four sides of the quadrilateral.

Dem. Put #4
=

#1/023 + #2/031 + #3/0i2- Then we have

2 K^
2

, OK X&* X^ ,

2 K#4=2 + 22 = 2 +- . 20i2#i#3 .

023 023 031 023 012 023 031

Hence the equation of the conic may he written

( x *\
20n#l* + 012 023 031 #4

2 - 2 = 0,

\ 023 /

or m-fii + mzx-f + m3x3
z + m^x^ = 0. (1060)

Reciprocally, any conic whose equation is of the form

4 w2#2
2 + max3

* + mix? =

is conjugate with respect to the quadrilateral.

For the polar of the point y is

= 0.

Hence the polar of the point A (yz
= 0, yz

= 0) passes through

A' (#!
= 0, #2

=
0).

2L2
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Cor. 1. If a conic divide two diagonals of a complete quadri-

lateral harmonically, it divides the third diagonal harmonically.

(HESSE.)

Cor. 2. If the coefficients m^ m2 ,
ms , m^ of equation (1060)

be all equal, the conic

w^2 + ?2r2
2 + wz3T3

2 + W4ar4
2 =

is the fourteen-point conic of the quadrilateral.

For the equations of the sides, expressed in terms of the sides

of the diagonal triangle, are of the forms

^a l2/3 I3y =
;

and when these are substituted for x^ x2 ,
x3) #4 in equation

(1060) if mi = m2
= ni3 = w 4 ,

it will be seen that the diagonal

triangle is autopolar with respect to the conic.

Cor. 3. The discriminant of the conic (1060) is 2 = 0.

m,

424. Any three conies are conjugates with respect to an infinite

number of quadrilaterals.

Dem. It is possible in an infinite number of ways to choose

the equations of four lines xl} x2 ,
x3 ,

#4 ,
so that any three conies

S\, S2 ,
S3 can be expressed in the forms

4#4
2 = 0, w^,

2 + w2#a
2 + nzx$ + w4 4

2 = 0,

= 0.

For each of these equations contains explicitly three indepen-

dent constants, and each of the lines # x2 ,
x3 ,

xt implicitly two

independent constants. We have thus seventeen constants at

our disposal, while the conies Sit S2 ,
S3 contain only fifteen

independent constants. Hence the proposition is proved.

Cor. If a quadrilateral be conjugate with respect to three

conies, its six summits are points on the Jacobian of the conies.

425. Since the four lines x
lt
x2 ,

x3 ,
#4 are connected by an

equation of the form \x = xt ,
and we may suppose the constants

AI, X2 ,
A3 included in xl} x2 ,

x3 ,
so that the relation may be written

x\ + #2 + %a + xi
= 0- Then, if we solve for x*, #2

2
,
x3

2
, xf from
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the equations of the conies, and denote the determinants

(%w3^4 ), (mantpi), (W4i#), (iai>3), by -^i, -4g, -4s> -^4, re-

spectively, we get Xi
2
, x, #3

2
, x? proportional to AI, A 2 ,

A 3 ,
A.

Hence, substituting in x
l + # 2 4- x3 + #4

=
0, we have the con-

dition that the conies Si, S3 ,
S3 have a common point, viz.

=
0,

or, cleared of radicals,

The right-hand side of this equated to zero is an invariant

whose vanishing denotes that the conies have an autopolar tri-

angle. For if AiA 2A 3Ai -
0, some one of its factors must be

zero, say A t ;
then the conies can be expressed in terms of

x\i #2
2
> #s

2
- In this case it is easy to see also that it is possible

to determine ?
1}

12 ,
13 ,

so that li&i + 12S2 + 13S3 may be a perfect

square.

NUMBERS OF INDEPENDENT INVARIANTS, ETC., OF TWO CONICS.

426. It has been proved by Gordon (see Clebsch, p. 291;

French translation, Benoist, p. 362) that two conies Si, S3

given by their trilinear equations have, including themselves,

twenty concomitants. These are 1. Four invariants, namely,

the coefficients Aj, 1} 2 ,
A 2 of Lame's equation. 2. Four

covariants, namely, Si, S2 , F> and the covariant J, which repre-

sents the three sides of the autopolar triangle of Si, S2 .

3. Four contravariants Si, S2 , 3>, and the Jacobian of Si, S2 , 3>,

which represents the three summits of the autopolar triangle of

Si, 82- 4. Eight mixed concomitants(German Zwischenformen).
These contain both point and line co-ordinates, and may be

regarded as covariants of the two conies Si, $2 and the line

A.,.
= 0. They are as follows :

1. The Jacobian^ =

= 0. (1062)
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This denotes the locus of a point whose polars with respect

to Si, S2 meet on Xx . It is also the locus of the poles of \x

with respect to all the conies of the pencil Si + kSz
= 0. For

the standard forms of Si, S2 its equation is

0.

2. The reciprocal formJV2=

= (1063)

expresses the equation of the line joining the poles of A,, with

respect to Si, S2 ,
or it may be interpreted as the envelope of a

line whose poles with respect to Si, S2 are collinear with the

point A, = 0. For the standard forms the equation is

T3
= 0.

(1064)

3. The line K^ whose pole with respect to St is the same as

the pole of A, = with respect to Si. For the standard forms

= 0. (1065)

4. The line K2 , whose pole with respect to Si is the same as

the pole of X, = with respect to $2 . For the standard forms

= 0. (1066)

5. J(Si, JTj, X,) differentiations being performed with respect

to Xi, x2 , x*.

6. J(S2 ,
JT2 ,

Xx) differentiations being performed with respect

to #1, xz , #3.

7. /"(Si, -ffi, Xz) differentiations being performed with respect

to A!, Xz, X3 .

8. /(22 ,
jff"2 ,

Xx) differentiations being performed with respect

to AI, AZ, Xg.
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For the standard forms, these mixed concomitants are, respec-

tively,

^1^2 = 0. (1067)

(11
~

#22) #3^As = 0.

(1068)

011 (022
~

(ha) Ai#2#3 + 022 (033
~

ll) A.2^3^1 + #33 ( 11
~

2s) Ag^i^ = 0.

(1069)

(1070)

EXERCISES.

1. If two triangles be autopolar with respect to a conic, their six summits

lie on another conic.

Let a conic S be described through three summits of one triangle and

two summits of the other, which we take for triangle of reference. Then

because S circumscribes the first triangle an + 22 + #33 = 0, and because it

goes through two summits of the triangle of reference u = 0, a22 = 0.

Hence 033 = 0, and therefore S goes through the remaining summit.

2. In the same case, the six sides of the triangle touch a conic.

3. The Jacobian of any conic, its orthoptic circle, and the line at infinity,

gives the axes of the conic.

4. If W be the Jacobian of the conic a*2 = 0, the circle

and the line at infinity, the discriminant of W will, after removing accents,

be the axes of a = 0.

5. Any two triangles in perspective are polar reciprocals with respect to

some conic.

6. If a triangle be autopolar with respect to a conic, its circumcircle cuts

the orthoptic circle orthogonally.

7. If S = a =
0, the conic

passes through all the points of intersection of non- corresponding sides

of the triangle of reference and its self reciprocal with respect to S.

(NEUBERQ.)
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8. If two of the vertices of a self-conjugate triangle with respect to S
lie on S', the locus of the third vertex is Q'S - AS' = 0.

DBF. The locus of a point whence tangents to a conic make a given angle

is called the ISOPTIC CURVE of the CONIC.

9. If S he the conic, X its orthoptic circle, prove that the isoptic curve-

for the angle <f>
is

X-t&n~<f> + 4A (zisin A\ + z2 sin Az + x3 sia. -43)

2 = 0.

10. If the lines A* = 0, \'x = intersect on the conic a*2 = 0,

<*31> a32> <*33> As, A'S,
= 0.

All A2 , A3 , 0, 0,

A'I, A'2) A's, 0,

11. Transform the central conies

(1071)

to a system of common conjugate diameters.

12. The points of section of two concentric conies lie on two diameters

which form a harmonic pencil with their pair of common conjugate

diameters.

METHOD OF IDENTITIES.

To demonstrate certain properties of conies it is often useful to consider

the equation of the curve under two different forms. The following exer-

cises will illustrate the method :

13. 1. If a conic S pass through the points of intersection of the conies

S\ and S?, and also through those of the conies 83 and Si, the eight points of

intersection of the conies Si and 83, 82 and 4, lie on a conic.

For the identity aSi ISi = cSa - dSt gives aSi - cSa = bS2 dSi,&c.

Cor. The intersections of the three pairs of opposite sides of a hexagon
inscribed in a conic lie on a right line.

If AECDEF be the hexagon, and we take for Si, 82, 83, St the pairs of

lines (AD, BC], (AB, CD), (AD, EF), (DE, FA), the conic aSi - cS3

consists of the line AD and the line passing through the points-

(BC, EF], (AB, DE), (CD, AF).
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2. Let x\y\z\, Xzyz^z, ... be the trilinear co-ordinates of six points

A\, AZ, ... on a conic A. Then from the six equations of condition we

get

= o.

Adding to the first column multiplied by A2 the successive columns mul-

tiplied respectively by /j.

2
, v2 , 2/j.v, 2v\, 1\p., the elements of the first column

become (A#< + fnyt + vzi)
2 or 8<

2
(i
= 1, 2, . . . 6). Developing this determi-

nant according to the elements of the first column, if B\, 2, . . . denote the

corresponding minors, we shall have the relation

+ -B252
2 + .SsSs

2 + 4? + BsW + = 0,

which should be true for all values of A, /*, v.

Now 8j is proportional to the distance of the point Ai from the line

Aa; + ny + vz = ;
thus there exists a homogeneous linear relation between

the distances of six points on a conic from any line in its plane.

Let us now consider A, /*, v as tangential co-ordinates. The equation

5< = represents the point Ai ;
from the identity (1) we conclude that the

equations

s
2 = 0, J?484

2 + -EsSs
2 + -BeSe

2 =

are identical. Now each represents a conic autopolar with respect to the

triangle 818283 = 0, or 848585 = 0. Then if two triangles A\AiA$, B\S^Bz

are inscribed in the same conic, they are also autopolar with respect to

another conic.

3. From (1) the equations

.BiSi
2 + -B282

2
4- -Bs&a

2 -!-'.^
2 =

0, J55S5
2 + -BeSe

2 =

are identical; the first represents a conic autopolar with respect to the

complete quadrangle AiAzAsA^ (two opposite sides are conjugate with

respect to the curve) ;
the second represents two points, harmonic con-

jugates with respect to AS and^e- Then, if a conic be inscribed in a quad-

rangle AiAzAzAi, there exists on a chord'A^Ae two points M, N, which are

separated harmonically by the couples (AiA
This is the theorem of Desargues.



522 Invariant Theory of Conies.

4. If six pairs of points A\A\, AiAj ... be conjugate with respect to

a conic, we can demonstrate as above that we have identically

.BiSi Si' + .028282' + . . . + -EeSeSs' = 0,

where 8, = \xt + fUji + vzi, 8,-
= A*/ + nyt + vzi, &c.

5. If Si = a? = 0, S = bj = 0, . . . S6 =/ 2 =

be six conies harmonically circumscribed to the same conic, their equations

are connected by an identical relation ~S,l\Si = 0.

Dem. Let 2 = be the tangential equation of the conic to which fli,

82, &c., are harmonically circumscribed, then we have six equations con-

sisting of the products of 2, and the coefficients of -Si, 2, &c.
; and, elimi-

nating the coefficients of 2, we get the determinant

22j 33, "23, 31> 12,

*11,

0.

Now, multiplying the columns, respectively, by #i
2

, *2
2

, *3
2

, 2*2*3, 2*i,

2*1*2, and adding to the first, the determinant will be changed into one whose

first column will be Si, 2, . . . <Se- Hence, denoting the minors of an, *n,

&c., by l\, It, &c., we have 2/i-Si = 0.

Cor. 1. If Si, S2 ,
... Se represent line pairs, we have P. SBRRET'S theorem

that if six line pairs *i*'i, *2*
r

2, . *6*'e be conjugates with respect to the

same conic, they are connected by a linear relation 2/i*i*'i = 0.

Cor. 2. If the line pairs coincide, Serret's theorem becomes " If six

lines *i, *2, . . . *e be tangents to the same conic, their squares are connected

by a linear relation 2^i*i
2 = 0."

Cor. 3. If

/i*i
2 + fc*2

2 + & 8 = 0, and ltxf + 1&? + lex&
z = 0,

by addition, h*i2 + ^2*2* . . . fe*6
2 = 0,

and we have the theorem of Ex. 1, If two triangles be autopolar with respect

to the same conic, their six sides touch another conic.

Cor. 4. If 2Zi*i
2 = 0, then

fl*l
2 + fe*2

2
-1- *J*3

2 + h*S = -
(k*5

2 + fc*6
2
).

Hence the left-hand side, equated to zero, denotes a line pair forming a har-

monic pencil with x&, *6, and dividing harmonically the three diagonals of

the quadrilateral formed by *i, *2, *3 , *i.
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Cor. 5. If x\, xz, #3, #4> #5 be any five lines, no three of which are con-

current, and h, lz, . . . 4 multiples which make 2i#i2 a perfect square, the

envelope of the line whose square it denotes is a conic which touches the

five lines.

14. Prove that the tangential equation of the centre of the conic ax
z = Q is

A^.A^nA = Q. (1072)

15. If a circle be harmonically circumscribed to a parabola, the locus of

its centre is the directrix.

16. If a circle of given radius be harmonically inscribed in a parabola,

the locus of its centre is a parabola.

17. Transform the conic

S = (xi
z + x<? + x3

z
)
= (405)

to the triangle formed by the poles of the lines ax = 0, bx = 0, cx = 0.

The substitutions are :

x\ = aix\ +

Then
S s Sixi

z + Szxr + S3xzz + 2Ri3X2x3 4- 2^31^3^! + ZJRizXiXz = 0,

(1073)

and the equations of the four conies J, Ji, Jz, /s cutting orthogonally the

conies S-(0,2
), S-(bxy-, S -

(cx)

z
, (405), are

S - (zi xz x3)
2 = 0. (1074)

18. The equations (1074) can be expressed in terms of the anharmonic

angles of the conies
; for we have

J=(l-Si, l-Sz, l-S3 , l-Bts, 1-^si, I -Bit) (*i,x, %)2 = 0.

(1075)

And, putting

-&) cos ^i,

1 + Sz3 = V(l
-

Sz] (1
-

Sy) COS f i, &C.

Then, if

Si = COs'-pi, Sz = COS2
p2, 83 = COS2 p3,

we get

/ =
(1, 1, 1, -cos^i, cosJ/z, -cosik)(#isinpi, ^sinp

(1076)

J\ = (1, 1, 1, cos^i, cos ^'2 , -cosi|/'3)(^isinpi, a;2sinp2, a?3 sin ps)
2 - 0.

(1077)

Jz = (i, 1, 1, -cosiJ/'i, cosJ2, -cosJ/'s)(a;isinpi, a;2sinp2, 3 sin pa)
2 = 0.

(1078)

= (l, 1, 1, -cos^'i,
-

(1079)
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19. Each of the four orthogonal conies J, J\ y Jz, Js has double contact

with four other conies, the chords of contact being in each case

#1 sin pi xzsinpz #3 smps = 0. (1080)

20. Through three given points can be described four conies, each having
double contact with a given conic S.

This is a particular ease of the four orthogonal conies /, J\, fa, Jz, namely,
when S (ar*)

2
, S (bx)~, S (cx)

3 denote line pairs ; but we can give an

independent proof. Thus, let

S s#i2 + #22 + xs* 2xzx3 coaAi - 2x3X1 cosAt 2xiXy cosAs = 0.

Then the four conies are

S-(xi xz *3)
2 = 0. (1081)

21. The four conies (1081) have each double contact with each of four

others, viz.,

S {xi cos (Az - AS) + Xt cos (As - A\) 4 xs cos (A\ - At) } 0,

(1082)

and three others got by changing the signs of A\ t AZ, AZ in this equation.

In these exercises A\, AZ, AZ have been used for facility of demonstra-

tion, and are not necessarily the angles of a triangle. In other words, the

equality A\ + AZ + Az = ie need not hold
; in fact, the angles may be even

imaginary.

22. Find the conditions that three conies Si, $2, 83 may have double con-

tact with the same conic.

23. The polar triangle of the middle points of the sides of a triangle ABC
with respect to any conic is a triangle equal in area to ABC. (FAURE.)

24. State the polar reciprocal of Exercise 21

25. Given

Si = aixi
2 + 02X2* + 03X3* = 0, 82 s bixi

2 + l>2X2
i + bsxf = 0,

nnd the envelope of A* = 0, if the tangent pairs to Si, Sz, whore they meet

A.*, intersect on a conic of the pencil Si kSz = 0. If the conic on which

the tangent pairs intersect be ci x i
t
^czxz'

2+ 3X3* = 0, the required envelope is

fArf +^. + ^V-O. (1083)
C\ Cz C3

26. Prove that the conies Si, Sz, and (1081) are inscribed in the same

quadrilateral.

27. The Jacobian of the three conies Si, Sz, 83 ( 424), is

Aijxi + AZ/XZ + Asjxs + Atjxi = 0, (1084)

and the Hermite curve is

(\z + \3-\i)A\ }

* + (A.3+ Ai - \t) B\z* + (\i + A2
- A3) tfAs

s- 2>AlAaAs = 0.

(1085)
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Miscellaneous Exercises.

1 . The two lines forming any of the three line-pairs, joining four con-

cyclic points on a conic, are equally inclined to either axis.

2. The axes of all conies passing through four concyclic points are

parallel.

3. Find the equation of the circle whose diameter is the normal at the

origin to the conic ax2 + 2hxy + by- -f Ify = 0.

Ans. b (z> + y
z
)
+ Ify = 0.

4. Find the locus of a variable point, if the perpendicular from a fixed

point on its polar with respect to (a, b, c, f, g, h) (x, y, I)
2 = he constant.

5. If two lines be at right angles to each other, the diameters with respect

to them of the triangle of reference meet on the line

a cos ^4 +0 cos .2 + 7 costf^ 0. (M'CAY.)

6. If a> be the Brocard angle of the triangle of reference, prove that

(a
2 + 0- + 7

2
)
sin a> - (7 sin (A <a)+ ja sin (B

-
<o) + a/3 sin (G- a>) }

=

is the equation of its Brocard circle.

7. The locus of the point of intersection of the polars of any point, with

respect to two conies, is a circumconic of their common self-conjugate tri-

angle.

8. Find the locus of the pole of the line \x = with respect to a system

of confocal conies given by their general equation.

9. If S = 0, S' = be two circles in trilinear co-ordinates, and m, m'

their moduli, find the equation of their radical axis.

Ans. m'S- mS' = 0.

10. Find the locus of a point from which tangents to two given conies

are proportional to their parallel semidiameters.

11. If two figures be directly similar, and if corresponding points be

conjugate with respect to a given circle, the locus of each is a circle, and

the envelope of their line of connexion a conic.

12. The directrix of a conic, and any two rectangular lines through the

focus, form a self-conjugate triangle with respect to the conic.

13. The equation of a tangent to a conic may be written x cos
<f> + y sin

<f>

ey = 0, the origin being the focus, and 7 = a directrix.

14. If two points on a conic subtend a given angle at a focus, the locus

of the intersection of the tangents at these points is a conic, having the same

focus and directrix ; and so also is the envelope of their chord.
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15. If two semidiameters of an ellipse make a given angle, the line join-

ing their extremities meets its envelope at the point in which it meets a

symmedian of the triangle formed by it and the semidiameters.

(D'OCAGNB.)

16. If two tangents to an ellipse intersect at a given angle, their chord

of contact meets its envelope at the point in which it meets a symmedian of

the triangle formed hy it and the tangents. (Ibid.)

17. Given the base and area of a triangle, prove that the locus of its

symmedian point is a hyperbola.

18. A circle S passes through a fixed point 0, and intersects a fixed circle

in a varying chord L. Show that if L envelops any curve given by its

polar equation, with as the origin, the polar equation of the envelope

of S may be at once written down ;
and hence show I

8
. If S envelop

a conic concentric with 0, L will envelop a conic, having as focus.

2. If S touch a line, L will envelop a conic.

(MR. F. PURSER, F.T.C.D.)

19. Two conies V, V are taken; U inscribed in a triangle ABC;
V touching the sidesA C, DC in A, S. Prove that the pole, with respect

to V of a common chord of U, V, lies on V. (Ibid.)

20. The locus of the centre of a conic, self-conjugate with respect to a

given triangle, the sum of the squares of whose axes is constant is a circle.

(FAURE.)

21. If a variable conic S' be harmonically inscribed in two fixed conies

Si, 82, the locus of the centre of perspective of the triangle of reference,

and its polar reciprocal with regard to S', is a conic.

22. Two concentric and coaxal conies U, V are such that a triangle can

be inscribed in U, and circumscribed to V. Show that the normals to U at

the summits are concurrent, and that the locus of their centre of concur-

rence is a coaxal conic. (MR. F. PURSE u, F.T.C.D.)

23. If a self-conjugate triangle, with respect to a conic section, be inde-

finitely small, the radius of its circumcircle is half the corresponding radius

of curvature.

24. If a triangle be formed by three consecutive tangents to a conic sec-

tion, the radius of its circumcircle is one-fourth the corresponding radius of

curvature.

25. If o, j8, 7 be the normal co-ordinates of a point in the plane of a

triangle, through which are drawn parallels to the sides meeting them

respectively in the points 1, 4
; 2, 5

; 3, 6
; prove that the trilinear co-

ordinates of the centre of the conic inscribed in the hexagon 123456 are

(o 4- b sin C),
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26. The locus of the points of contact of tangents from the point a fry'

to the system of conies o/3 = Iff when k varies, is the conic

a ff = V
a P 7

27. If e vary, the locus of the points of contact of tangents from x'y' to

Xz + y* = ezy
z

is (xx' +. yy')l(x
z + y

2
)
=

y'jy.

28. The locus of a point, whose polars with respect to two circles meet

on a given line, is a hyperbola.

29. The equation Va sin ^4 + V/Ssin-Z? -f V y sin G~= denotes a hy-

perbola whose asymptotes are parallel to the lines a, 0.

30. If a circle whose diameter is d passes through the origin and inter-

sects the conic (a, b, c,f, g, h)(x, y, I)
2 = in four points, whose radii

vectores are pi, pz, pa, pi, prove that

31. The lines through the origin, and the intersections of

(a, b, c, f, g, h) (x, y, I)
2 =

0, with \x + p.y + v = 0,

are at right angles if

c (\
2 + p?)

- 2 (fn + ff\) v + (a + b) j/
2 = 0.

32. In the same case, the locus of the foot of the perpendicular from the

origin on \x + p.y + v = is the circle (a + b) (x
z + y

1
} + Igx + 2fy + c = O r

and the envelope of \x + py + v = is the conic

c {(a + b) (x* + jr) + Igx + Zfy + c}
= (/*

-
gy)*.

33. If the axes be oblique, find the equation of the rectangular hyperbola,

making intercepts \, \'; /*, /j.'
on them.

34. Find the condition that \x + p.y + v = should be normal to

a* b2

a2 c*
Am. + =

\* fj? v1

35. Find the equation of the locus of the centre of a conic touching the

four right lines

a = *cosa -f ysina-pi = 0, j3 = x cos + y sin & pz = 0, &c.

(PnoF. CUKTIS, s.j.)
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As in Ex. 3, Art. 188, from the given conditions we have four equations of

the form
A B . -2H .

cos^o + 7, sm
2o + sm o cos a = p\ (2a -1- pi).G G . G

Hence, by elimination,

cos2a, siiva, sin o cos a, pi(2a+pi),

cos,
2
ft, Bin1

ft, sin ft cos ft,
= Vj

cos27, sin'7, sin 7 cos 7,

cos28, sin23, sin 5 cos 8,

which is the required equation. If the determinant he expanded, and

putting A A A
I = sin By . sin 78 . sin 80, &c., we get

L = lpi(2a+pi)-mpz(2ft + pz) + np3 (2y + PS) -rpi(28+pt) =
0,

and the origin being transferred to any point of the locus, by putting

pi = a, pz = ft, &c., this becomes L = la? - mft
2 + ny* r32 = 0, which,

though apparently of the second degree, is only of the first ; for, on substi-

tuting a; cos a + ysin a p\ for o, &c., the coefficients of x2
, xy, y

2 vanish

identically.

36. If the equation in Ex. 35 be written in the form

la2 - tnft* 4 ny
2 a r82 + I,

we infer that a parabola may be described, having the triangle afty as self-

conjugate, and touching L at the point where it meets 8. (Ibid.)

37. In the same case, prove that la? mft* = is a pair of common tan-

gents to the parabolas rS2 4- L =
0, ny

1 L = 0, and ny~
- r82 = a pair

of common tangents to the parabolae tuft
2 + L =

0, l
2 - L = 0, and that

the former pair intersects the latter on L.

38. If a vary in position while ft, y, 8 remain fixed ; then, if o touches

a fixed conic to which and 7 are tangents, the envelope of L is a conic.

(Ibid.)

39. Given three tangents to a conic, and the sum of the squares of its

axes, the locus of its centre is a circle. (STEINER.)

40. The distances of three points P, Q, R on a conic from either focus are in

arithmetical progression. If Q^Vis the normal at Q, prove that NP = N.
(CBOFTON.)

41. If the joins of the points in which (a, b, c, f, g, h) (a, ft, y)
2 meets

the sides of the triangle of reference to the opposite vertices form two triads

of concurrent lines ; prove abe 2fgh af
2

bg
2 ch2 = 0.
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Compare the equation with

II' of + mm'p + nn'y
z -

(mn' + m'ri) &y - (nl' + n'l) ya - (lm' + Tm] aj3 = 0,

which meets the sides in points whose joins with the opposite vertices are

the two concurrent triads la. = m& = ny, I'a = m'fi = n'y.

42. Find, in this manner, the equation of the nine-points circle, the

Lemoine circle, the inscribed conic, and the inscribed circle, &c.

43. If A, /u, v denote the perpendiculars from the angular points on a

tangent; prove that A2tan^4 -f ju
2 tan^ + >/

2 tanC'= denotes a circle.

44. From last Example prove by reciprocation, if la2 + tnfi
2 + ny* =

denote a circle, that

tan J>j

where a', ', y' denote the co-ordinates of the centre, and
i|/i, ^2, \J/s

the

angles subtended by the sides at the centre.

45. Four concentric equilateral hyperbolas can be described, having the

four triangles formed by any four arbitrary lines as self-conjugate.

46. If through any point in the axis of perspective of a triangle and its

orthique triangle parallels be drawn to the three sides, these parallels meet

the sides in six points which are on an equilateral hyperbola.

47. In a given conic inscribe a triangle whose sides shall pass through

.given points.

Let the given conic be a/3 = y
z
, the given points abc, a'b'e', a"b"c", and

the parametric angles of the angular points of the inscribed triangle

0, 6', d" ; then, putting * = tan0, &c., we have (Art. 160) the three

-equations

+ btt'-c(t -f = 0, a' + b't't" - c' (f + t")
= 0, a" + b"t"t - c"(t" + t)

= 0.

Hence, eliminating t', t", we get a quadratic in t, viz. :

(a'bb" + VcJ' - cc'b" - c'c"b)t
z + { 2c (c'c"- a"b")

- A } t

+ (dec" + b'aa" c'ac" c'a"e) = 0,

where A denotes the determinant (ab'c"). Hence, in general, two triangles

can be inscribed : the condition for only one is the equation in t, having

equal roots. Hence, if two of the points be given, and the third variable,

its locus, so that only one triangle can be described, is a conic.

48. The conies

- + + - =
0, sin \A . Va + sin\B , V0 + sin ^ C . V-y

= 0,
y

are confocal. (LEMOINE.)
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49. In the same case, the symmedian point of the triangle formed by the

centres of the escribed circles of the triangle of reference is the common

centre of the conies. (LEMOINE.)

50. Let (A, B) and (a, $) be the principal semiaxes of a confocal ellipse

and hyperbola through any point P ;
draw the tangent to the ellipse at P

; let

X, Y be the points where it meets two tangents perpendicular to it to any
confocal ellipse (a, b) ; prove

XP . PY = & + . (CROFTON . )

61. A triangle is inscribed in x1 + y* z2 = 0, and two of the sides touch

ax1 + by"
1 ez1 =

;
find the envelope of the third side. (SALMON.)

The condition that \x + tay + vz shall touch ax2 + by
2 czz = is

A2 M2 "2_ + !!_ = 0;
a b c

and denoting (Art. 159, Cor. 2) the parametric angles of the vertices of

the triangle inscribed in x* + y
2 - zz = by 9, 0', 0", the equation of the

join of e, 0" is

x cos \ (0 + 0") + y sin \ (9 + 0") -zcoa%(0- 6") = 0.

Hence the condition for this touching ax* + by* cz
1
* = is

cos2 j (0 + 0") sin 2
(0 + 0") cos2 (0

-
0") _

a b c

that is,

/I 1 1\ /I 1 1\ /I 1 1\ .- + T--I + [-- T--)cos0cos0 +( T am e sm 0" = 1

\a be] \a b c/ \b e a)

or, say, I + m cos 6 cos 0" + n sin & sin 0" = 0.

In like manner, we get

I + m cos 0' cos 0" + n sin 0' sin 0" = 0.

TT wtcosfl" cos (0 + 0') sin0"_ sin (0 + 6')

/

~
cos J (0-0')'

'

/

~
cos f[0"^0')'

Now the chord of x2 + y
2 - z2 = 0, which is the join of the points 0, 0', i*

x cos J (0 + 0') + y sin \ (0 + 0')
- z cos J (0

-
0')

= 0.

Hence mx cos 0" + y sin 0" + & = 0,

and the envelope is nPx* + n*y
z - Pzz = 0.
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62. The equation of a conic confocal with

S^(a, b, e,f, ff, A)(,0, 7)2
= 0,

and touching \a + [t.& + vy = 0, is

n2A2S-n2F+22Jf2 = [Jf ^osin^ + smB + 7 sin C'].

53. FT, QT are tangents to a conic at the points P, Q; from the centres

of curvature at P, Q perpendiculars are drawn to the chord of contact PQ ;

prove that the parallels to PT, PQ drawn through the feet of the perpen-

diculars meet on the symmedian line of the triangle PQT drawn through T.

(D'OCAGNE.)

54. Find in the plane of an ellipse a triangle ABC such that the sum of

the squares of the perpendiculars from the summits on any tangent is con-

stant. If the triangle he fixed and the ellipse varies we obtain a confoeal

system. (NEUBERG.)

65. The hyperhola
1 1 1-
a
+
0-y

= Q
>

and the hyperbola

(cos
2^ . o + cos2 %B . ^ + sin2 C. y)

z - 4 sec2 \A . sec2 \B . o)3 =

are confocal, and their common centre is the symmedian point of one of

the triangles formed by the incentre and the centres of two of the escribed

circles. (LEMOINE.)

56. The locus of the foci of all ellipses touching a given circle at two

fixed points is the perpendicular bisecting the join of those points and the

circle passing through them and the centre of the given circle. (CiioFTON.)

57. A system of four conies having two points common, and each harmo-

nically circumscribed to a fifth, are such that their points of intersection, six

by six, lie on three conies.

For, taking the common points as vertices of the triangle of reference,

their equations will be of the form

S s iz
2 + Ifiyz + Igizx + 2h\xy = 0, &c. ;

and there are four relations,

aiA' + Zfil" + 'ZffiG' + 2hiH' = 0, &c.

- mSz + nS3 -pS* = 0, &c.

2M2
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58. The condition that the line (y
-

y')
= m(x-x') should be normal to

is

n (JV
2
)
- 2w3

(6Vy') + m2
(a

2*'2 + iy 2 -
c<)

- 2w (aVy') + y* = 0.

Hence, find an expression for the sum of the angles which the four normals

from any point make with the axis of x.

59. The sum of the angles made with a given line by the four normals

from any point to a series of confocal conies is constant."

60. The locus of points having the same eccentric angle on a series of

confocal ellipses is a confocal hyperbola.

61. A circle passing through three points on any one of a series of con-

focal ellipses, the points always lying on fixed confocal hyperbolae, meets

the ellipse again, where it is met by another of the confocal hyperbola.

62. In the last question, supposing the three points to coincide, we have

a theorem for the circle's curvature of a series of confocal ellipses.

63. The locus of the centres of curvature at points on confocal ellipses

where a confocal hyperbola meets them is

cos6
<f>

sin8
<f>

1

64. If four normals OA, OS, 00, OD be drawn to a conic from the

point x'y' ; prove that the tangents at the points A, B, C, D, and the axis

of the conic, all touch the parabola
V

(xx' + yy' + c2
)
2 = 4cV#.

65. Prove that the directrix of the parabola in Ex. 64 is the join of the

given point x'y' to the centre.

66. Given four tangents to a conic, viz., a = 0,
= 0, 7 = 0, 8 = 0;

find the locus of the foci. Let a + J0 + cy + dS = be an identical

relation ;
then

abed
o * (SALMON.)
p 7 o

is the locus required.
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67. If a variable conic pass through two given points, and have double

contact with a given conic, the chord of contact passes through one or other

of two given points : prove this, and thence infer that foupcircumconies of

a given triangle can be described, each having double contact with a given

conic.

68. Prove that if (a', 0', 7') be a point on the conic Aa? + B0~ + Cj* = 0,

the conies A
(a.
-

Aa')
2 + B (ft

- AjS
2
)

2 + C(y
-

\y*)*
= touch the former at

that point, A. being any constant. The same is true if A = ax + by + e.

(CROFTON.)

69. If ax
z = 0, bx

2 =
0, cx

z = be three conies, such that each is harmo-

nically circumscribed to the other two ; prove that

ai, 2,

*lj #2,
= 0.

70. Given a tangent to a variable conic, its eccentricity, and one of the

foci, prove that the locus of the other focus is a circle.

71. If two triangles ABC, A'B'C' are reciprocal polars with respect to a

circle (centre 0), the polar of the centroid of AB with respect to the circle

O coincides with the polar of with respect to the triangle A'B'C'.

(NEUBERG.)

72. If a quadrilateral be described about a parabola, the three circles

described on the diagonals of the quadrilateral as diameters have the

directrix for their common radical axis.

73. A, B, C
; A', B', C' are two triads of points on two lines L, M.

Three homothetic conies through ABC', BCA', CAB' meet M again in

the points f, Q', R' ; and three other homothetic conies through AB'C',

BC'A', CA'B' meet L again in P, Q, ; prove that the lines PP', QQ',

RR' are parallel. (MR. F. PURSER, F.T.C.D.)

74. If X, Foe the co-ordinates of a focus of ax2 + 2hxy + by
z + e = 0,

prove that

j? _ Y* XY c

a-b
'

h ab-W

and if
/j.

denote the product of the perpendiculars from the foci on any

tangent, prove that

(H(, + )*
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75. Prove that the eccentricity of the conic given by the general equation
in terms of its invariants I\, Jz of the first and second degree in the coefficients

is given by the equation
e* Ji

2-4Ja

76. If from the points 1, 2, 3, 4 perpendiculars be drawn to the four

lines o = 0, = 0, 7 = 0, 8 = 0; then

01,
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80. If ABC be a triangle self-conjugate to a conic ; X, p, y perpen-

diculars from A, B, C on the tangent at any variable point D on the curve ;

prove that

\(BCD] + n(CAD) + v (ABD) = 0.

81. The circumcircles of the triangles formed by four right lines o, , 7, 5

meet in a point ; tangents at the vertices of the triangla p-yS to its circum-

ircle meet a in the points A, A', A". Similarly are found, on the lines

V3, 7, 5, the triads B, B', B"; G, C', C"; D, D', D". These points lie four

by four on three circles, each passing through 0, and through the extremi-

ties of a diagonal of the quadrilateral 0^878.

82. If 5 be the circle through the circumcentres of the triangles 0)87,

ojSS, 078, 78, the diameters of the circumcircles of the triangles afty, aS,

ayS, passing through the vertices opposite the common base a, concur in 2.

83. If through the symmedian point three antiparallels be drawn to the

sides of the triangle of reference, the six points of intersection with the sides

lie on a circle [second circle of Lemoine]. Find the equation of this circle.

Ans. 2#7 sinA tan3
<w 2 sinA^a cos A cosec^A = 0.

84. Being given a self-conjugate triangle and a tangent to a conic, the

locus of its centre is a right line. (See Art. 188, Ex. 3.)

85. If one of four sides of a quadrilateral envelop a conic, the other three

being fixed, the line through the middle points of the diagonals will also

nvelop a conic.

86. Tangents drawn to a parabola, from the centre of a circumconic of

a self-conjugate triangle of the parabola, are conjugate diameters of the

conic.

87. If the centre of the conic be a point on the parabola, an asymptote of

the conic is a tangent to the parabola.

88. If corresponding points of similar figures, similarly described on two

sides of a triangle, be the poles with respect to a circle of corresponding

lines of the same figures ; prove that the points are equally distant from the

centre of the circle.

89. Given S = ax* + Ihxy + by
z + c =

; prove that the equation of any

pair of conjugate diameters is

dS dS
lx + my =

;

ay ax

and if the diameters be equiconjugate, their equation is

ab A2 a + b
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90. The equation of the four normals from the point (a&) to the ellipse

*2
/

2 + y
2
/*

2 -1 =

ia (a
J
/

2 + &/& -
1) Hz + 2 (az/a* + py/b* -\)HL

{ + (/a2 + y/*
8 -

1) i2 =
0,

where H = a-y (x*- a)
- b*z (y

-
0),

(CROFTON.)

91. The equation of the reciprocal of the parallel to the parahola at the-

distance r with respect to the circle x1 + y
2 = k2 is

(*** - aV) 2 = r2*2
(** + y

2
).

92. The reciprocal of the parallel to an ellipse at the distance r with

respect to the circle xz + y* = A2
is i -

93. If the hase and the Brocard angle of a triangle be given, the locus of

the centre of the Brocard circle is an ellipse. (NEUBERG.)

94. If a variable conic S, passing through two fixed points I, J, touch a

fixed conic S' at a fixed point, prove that the locus of the point of inter-

section of a pair of common tangents to S, S' is a conic inscribed in the

quadrilateral formed by the tangents from the points /, / to S'.

95. If the axes and a tangent to a conic be given in position, prove that

the locus of the centre of the circle osculating it at the point where it

touches the tangent is a parabola.

96. If the extremities of the base of a triangle be given in position, and

also the symmedian passing through one of these extremities, the locus of

the vertex is a circle. (NEUBEBO.)

97. In the same case, the envelope of the symmedian passing through

the vertex is a conic.

98. The extremities B, C of a triangle are given in position, and the

vertex moves on a given conic, passing through the points B, C
; prove, if

BA, AC pass through corresponding points C',
'

of two similar figures,.

that the loci of the points C",
'

are conies. (NEUBEKG.)

99. The base BC oi a triangle is given in position, and the angle in

magnitude ; prove, if A'B'G' be the triangle formed by the tangents to the

circumcircle at A, B, C, that the following loci are conies: 1. of the

point C'
;
2. of the symmedian point of ABC; 3. of the point of inter-

section of BB' and AC. (Ibid.)
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100. In the same case, prove that the envelopes of the lines B'C', AA',
cTand the join of the circurncentre and orthocentre are conies. (Ibid.)

101. Prove that the equations of the three axes of perspective of the

triangle ABC and Brocard's first triangle are, in normal co-ordinates,

sin2^.q sin2 B . sin2 C. y _
sin (A- 2

o>)

+
sin( Jfi-2w)

+
sin((7-2w)

~
'

2 _g
,__ ,_7_

sin B . sin(- 2a>) sin C. sin (A -
2o>) sin . A . sin (B - 2w)

,+
sin (B - 2o>) . sin C sin(C- 2a>) . sin ^4 sin (A- 2o>) . sin.B

'

and in barycentric co-ordinates

I m n ' m n I
'

n I m

where I= 42c2 - a4
,
m = c2a2 b*, n- a2}2 - c4 .

102. If two triangles circumscribed to a circle be in perspective, their

Gergonne points and their centre of perspective are collinear. (ARTZT.)

103. If A', B', C' be the middle points of the sides of a triangle ABC, and

AI, BI, C\ the feet of its altitudes
; a, ft, y the double points of its line

pairs B'C\, -Z?iC" ; C'A\, GiA' ; A'B\,A\B'; and 01, 1, 71 the double

points ofB'C', B\C\; C'A', C\Ai; A'B', A\B\, then the point pairs aoi,

jSjSi) 771 form the opposite summits of a complete quadrilateral, three of

whose sides pass through the points A, B, C, and the fourth containing the

points a, 0, y is the Euler line of the triangle ABC. Also the lines Aa\,

E&i, Cyi are each perpendicular to the Euler line. (SCHROEXER.)

104. If two vertices B, C of a triangle be fixed, prove that the two vertices

A, A' of the triangles BOA, BOA', which have a common symmedian

point K describe, when K moves, two inverse figures.

(NEUBERG AND SCHOUTE.)

105. The chords of contact of the excircles of a triangle ABC with the

sides produced form a triangle A\B\C\ in perspective with ABC. The cir-

cumcentre of A\.B\C\ is the orthocentre of ABC, and also the centre of

perspective of the triangles.

106. In the same case the axis of perspective is

This line is perpendicular to the join of the incentre and orthocentre

of ABC.
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107. If
, |8, 7 be the equations of the sides of a triangle, the equations of

the sides of its cosymmedian triangle are

20/S + 2y/e
-

a/a = 0, 2yje + 2a/a
-

j8/i
=

0, 2a/a 4 2/8/i
-

yje = 0.

(SIMMONS.)

108. The axis of perspective of a triangle and its cosymmedian triangle is

the line

a/a + 0/i + 7/e = 0.

109. The six remaining points in which the lines a, j8, 7 meet the sides

of the cosymmedian triangle lie on the conic

6 (afrlab + fty/bc + yajca)
- 2 (a

2
/*

3 + 2
/i

2 + 72/c
2
)
= 0.

110. The diagonals of the hexagon in Ex. 109 are concurrent. Their

equations are

/* + yje
-

2aja = 0, &c.

111. The equation of the circumcircle of the triangle formed by the poles

of the sides of the triangle of reference with respect to its circumcircle is

(a sinA + & sin B + y sin C) (a cosA + j8 cos B + y cos C)

4- 4 cosA cos B cos C (Py sinA + ya sin /3 -t- a/3 sin C] = 0.

112. Let o, )8, y, 8 be four lines cutting any fifth e in A, B, (7, D. Prove

that the four conies circumscribed to the triangle 78, 780, 8a/3, aj8y, and

touching a, 0, 7, 8 respectively in A, B, C, D, intersect c in the same point.

(NEUBERG.)

TESCH'S HYPERBOUE.

113. DBF. A line My through any point M of an ellipse making an

angle with the tangent MT is called a normal. (TESCH.)

Theorem. Through a given point hk in the plane of an ellipse can be

drawn four normals. Their feet are the intersections of the ellipse with

the Tesch hyperbole H P cot 6 = 0, where H = denotes the Apollonian

hyperbolae of hk and P = its polar with respect to the ellipse. Any three

feet and the point diametrically opposite the fourth lie on a circle .

For if the co-ordinates of N be x'y', and if we form the condition that

xx'ld* + yy'jb
2 1 = makes an angle 6 with the join of the points x'y', hk,

we get an equation which after removing accents gives H - P cot = 0.

Cor. If varies and the point hk remains constant, the Tesch hyperbola

passes through two fixed points, viz. the points common to H and P, and

remains homothetic to H.



Miscellaneous Exercises. 539

114. If a Tesch hyperbola of a point hk meet the ellipse in the points

M, N, P, Q any two of these points, say MN, the pole of their chord MN
and the point hk are concyclic.

115. If an equilateral hyperbola whose asymptotes are parallel to the

axes of an ellipse meet it in four points M, N, P, Q, the circle through

M, ^ZVand the pole of JOT with respect to the ellipse, and the analogous

circles for the point pair MP, JVT, &c., all pass through a common point.

(NEUBEKG.)
For the equation of such a hyperhola is xy + Ax + By + C = 0, and this

can be identified with the Tesch hyperbola of the point hk.

116. If a, P, 7 be the eccentric angles of three points on an ellipse whose

9 normals are concurrent, prove that

2icot0 = <?
2
{sin(0 +7) + sin (7 + 0) + sin(a + 0)}.

117. If a, )8, 7, 8 be the eccentric angles of the feet of four normals

from a common point, a + /3 + y + 8 = (in + i)ir. Hence we have a

generalization of Joachimstal's circle.

118. If xi, #2, x3 , x^ be the four sides of a quadrilateral, the equation of

the conic, which touches a\x\ + #2^2 + #3#s + at&\ and is inscribed in the

quadrilateral, is

-
4)

2
(2 - s)

2
(x\x 4 xzxz)

= 0. (CAYLEY.)

119. Find the locus of the centre of a conic which hyperosculates

axz + Ihxy + by
z + Igx at the origin.

120. If x\y\, xzy2 , xzya, xiyt be any four points on a conic referred to

the centre as origin,

2 (xzy3
-

x$y-i) (x3yi
- ar4y3) (z<y2

-
#2^4)

= 0.

121. Prove that the axis of the parabola (#/) + (y/#)4
- 1 = is

xja
- y\b + (a?

-
b'}l(a

2 + P + lab cos 6)
= 0,

where is the angle between the axes.

122. If the conies Si, S-z, 83 hyperosculate in the point A, and meet two

lines AX, AT m the point pairs B\, C\\ BZ, Cz; Z?3 ,
C3 , &c., the chords

B\Ci, HzCz, B$Cz, &c., are concurrent. (PONCELET.)

123. In the same case, the tangents at B\, 2, BS are concurrent.

(Ibid.)

. 124. If a variable parabola touch three fixed lines, the chords of contact

pass through three fixed points.
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125. All ellipses which have double contact with each of two fixed circles

(one internal to the other) are similar curves. The locus of their centres is

the circle on the line joining Ihe centres of the circles as diameter. Also*

the locus of their foci is a circle concentric with the outer circle.

, (CKOFTON.)

126. If two conies of a confocal system whose semiaxes are a, b; a', t>'

respectively intersect in a point M co-ordinates x'y', then if N, N' he the

centres of the circles osculating the conies at M, the equation of N2f is

(*
2 + b'*)xx' + (a* + a'2

) yy'
= a2 i'2 + a'

2 *2 .

127. The same line in terms of the co-ordinates of M is

(
X>* + y'z

_ c^ xx
' + (g>t + / + c*}yy'

= c*(**
-

y'*
- c2

).

128. If a parabola touch the sides of a given triangle ABC in A', 3', C",

the locus of the centre of perspective of the triangles ABC
t
A'B'C'is an r

ellipse touching the sides of ABC at their middle points.

1291. If two triangles be polar reciprocals with respect to a circle, the

barycentric co-ordinates of the centre of the circle are the same for both

triangles.

130. Find a point MI such that parallels through B, C, A to AM\, BMi,

CM\ meet in a point M2 . Show that parallels through C, A, B to AMz,

BMy, CM-i meet in a point Ma, and prove 1. that the points Mi, MZ, M$
are isobaryc ; 2. that their co-ordinates satisfy the relation o" 1 4 jS"

1 +y 1 = 0.

(NEUBERG.)

131. Prove that N in Ex. 126 is the intersection of the polar of M with

respect to the orthoptic circle of the hyperbola with the tangent at M to the

hyperbola, and N' is the intersection of the polar of M with respect to the

orthoptic circle of the ellipse with the tangent at M to the ellipse.

132. In the same case, if MM' be the perpendicular from M on NN', the

points M, M', and the foci are conoyclic, and the line MM' is a symmedian
of the triangle formed by M and the foci.

133. If Si, 82 he conies osculating in A and intersecting in A\, then if

any line through A meet the conies again in B\, Bz, the tangents at Bi, Bz

meet on AA\. (PLUCKEU.)

134. If a cos 0, b sin be the co-ordinates of a point on the ellipse

*2
/a

3
-f y

z
/b-

= 1, prove that the co-ordinates of the second point in which

the osculating circle there meets the curve, are a cos 39, b sin 30.

(CKOFTON.)
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135. If n, rz, r3 be central vectors of a conic whose semiaies are a, b,

prove that

(2/a
2 + 2/i

2
)
sin (r2r3) sin (vi) sin (nns) = 2 sin2 (v;;j)/r3

2
.

(FAURE.)
136. In the^same case, 4 sin2 (rir2 )

sin2
(r2r3) sin

2
(?3ri)/(a

262
)

= 22sin2(nr2) sin
2
(nr3)/(r2

2r3
2
)
- 2sin4

(n-2)/r,*. (Ibid.)

1 37. The locus of the centre of a conic circumscribed to a given triangle

and whose axes have a given direction is a conic.

138. Find the loci of the extremities of the minor axis of a conic touching
two sides AB, AC of a given triangle, if the foci be points on the third

side.

139. Find in the plane of a triangle ABC & point M such that the per-

pendiculars from A, B, C on BM, CM, AM meet in the same point M' ,
and

prove that the locus of M and M' are Neuberg's Hyperbolae.

140-144. Prove the following properties of the common chord of an

-ellipse and its osculating circle

1. Its envelope is (x\a + yjbfi + (x\a
-
y\V$ 2.

2. The locus of its middle point is (a;
2
/a

2 + y
2
/*

2
)
3 = (z

2
/0

2 - y
2
/i

2
)
8

.

3. The locus of its pole is *2
/a

2 + y
2
/*

2 =
(*

2
/a

2 -
*/
2
/i

2
)

2
.

4. The locus of the projection of the centre of the ellipse on the chord is

(x
z + y*)

2
(a?a? + 2

y
2
)
=

(a
2 *2 - S2y

2
)

2
.

5. Its length is a maximum at the point whose eccentric angle

= tan-1

( J ffi+ V (c*

145. The centre of the equilateral hyperbola determined by any four points

{A, B, C, D) lies on the pedal circle of any of them (D) with respect to the

triangle formed by the remaining three (ABC).

Dem. Let EFG be the pedal triangle of D with respect to ABC, bisect

BC, DC, AC in H, I, J; then the circles through E, H, I; I, J, F are

evidently the nine-points circles of the triangles BCD, CDA. Hence 2T,

their second point of intersection, is the centre of the equilateral hyperbola

ABCD. Join KE, KI, KF. Then [Euc. III. xxn.] the angle EKI= IRC
= DC, because HI is parallel to BD = EGD [Euc. III. xxi.] In like

manner IKF = DGF. Hence EKF = EGF, and the proposition is proved.
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' K is one of the points of intersection of the nine-points circle of the tri-

angle ABC and the circumcircle of the pedal triangle EFG. If K' be their

second intersection, K' will be the centre of the equilateral hyperbola, deter-

mined by the points A, 3, C, and D' the isogonal conjugate of D with respec:

to the triangle ABC.

Cor. If D, _ZX be collinear with the circumcentre of ABC, the hyperbolae

ABCD, ABCiy coincide, for each is the isogonal transformation of the line

-D2X. Hence the points K, K' coincide, and we have the theorem If two

points D, D", which are isogonal conjugates with respect to a triangle, be

collinear with its circumcentre, their pedal circle touches its nine-point circle

( 256).

146. Being given any four points, the pedal circletrof any point with

respect to the triangle formed by the remaining three all pass through a

common point.

147. If a point D describe an equilateral hyperbola passing through three

given points A, B, C, the pedal circles of D with respect to the triangle A BO
all pass through a fixed point. (SOLLEHTINSKY.)

148. If a point D describe a fixed diameter of the circumcircle of the

triangle ABC, its pedal circles pass through a fixed point. (Ibid.)
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149. The twin point of D, with respect to the triangle ABC, and its
"'

symetriques with respect to the sides of ABC lire concyclic.

150. If D, D' be isogonal conjugates with respect to the triangle ABC,
and collinear with the point 01^171, their locus is the cubic

2aai (IP
- 7

2
)
= 0.

151. A conic inscribed in a triangle touches its sides in P, Q,R; if the

normals at P, Q, jR concur in S, the locus of S is the cubic

2a (/3
2 - 7

2
) (cosA cos B cos C) . (NEUBERG and SCHOUTE.)

152. The point S and its isogonal conjugate with respect to ABC are

collinear with the symetrique of the orthocentre with respect to the circum-

centre. (Ibid.)

153. The circumcentre is the centre of symmetry of the cubic (Ex. 151).

For the symetriques of P, Q, JR with respect to the middle points of the

sides of A, B, C are points of contact of another satisfying the question.

(NEUBEUG.)

154. If the lines AP, BQ, CE (Ex. 151) intersect in T, the locus of Tin
barycentric co-ordinates is

- 7
2
)
cot A = 0. (Ibid.)

155. In the same case the locus of the centre of the inscribed conic in

barycentric co-ordinates with the complementary of ABC as triangle of

reference is -

2o (0
2 - 7

2
)
cot A = 0. Ibid.)

156. If ABCD, A'B'C'D' be two quadrangles so related that A, A' are

isogonal conjugates with respect to the triangle BCD ; B, B' with respect

to CDA ; C, C' with respect to DAB ; D, D' with respect to ABC, then

the sides of A'B'C'D' are bisected perpendicularly by the sides of ABCD,
viz., A'D' by BC, B'C' by AD, &c. (Ibid.)

157. In the same case, if The the mean centre of the points A', B', C', D',

the nine-points circles of the triangle A'B'C, B'C'D, &c., are the symetriques

with respect to T of the pedal circle of D with respect to ABC, of A with

respect to BCD, &c. ;
and the equilateral hyperbola A'B'C'D' is the syme-

trique of the hyperbola ABCD. (Ibid.)

158. If 7 be any of the excentres of the triangle ABC, and IE a. tangent

from I to the circumcircle, the isogonal transformation of IE is a parabola

touching IE in I, and passing through the points A, B, C. If the isogonal

conjugates of AE, BE, CE meet IE in FGH, the medians through A, B, C
of the triangles IAF, IBG, ICH are tangents to the parabola.
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159. Find in the plane of a triangle ABC & point M such that the sum

of the powers of A with respect to the circles on BM and CM as diameters

shall be equal to the analogous sum relative to B, and also equal to the

analogous sum relative to C. Show that this point is the symetrique of

the centroid of ABC with respect to the circumcentre. (LEMOINE.)

160. Let A', B", C' he the middle points of the sides of the triangle

ABC, and its circumcentre. On A 0, B"0, C'O are taken, either

towards or in the opposite sense, equal lengths A'Pa = B'Pb = C'Pe = A.

When A. varies the sides of the triangle PaPbPc move on three parabolas

<i, itb, irc whose foci are the projections of on the bisectors A I, BI, CI,

and whose directrices are the internal bisectors of the triangle A'B'C'.

(MANDART.)

161. Being given a triangle ABC and a point M, we draw through M
three lines, so that M is the middle point of the parts Nzlfs, PzPi, QiQz,

intercepted in the angles A, B, C; let NI, Pz, Q3 be the points where those

lines meet the third side of the triangle. The six points Nz, NS, PS, PI, Qii

Qz lie on a conic whose equation in barycentric co-ordinates is

xyz -(x- 2a) (y
-

20) (z -f 2-y)
= 0,

a, j8, y being the co-ordinates of M. It is an ellipse or hyperbola according

as .!/ is interior or exterior to the ellipse E which touches the sides of ABC
at their middle points ; it is an equilateral hyperbola if M is situated on the

radical axis of the circumcircle and nine-points circle of ABC. If M is on

the ellipse , the points N^PaQi, N$PiQz are on two parallel lines which

envelope two curves whose tangential equations are

vj\ = 3, \lv + n/\ + JT//I
= 3.

The line NiPzQa has for equation

*/a + y/|B + z/? = 2.

The triangles N^PzQi, NzP\Qz have for area

if this area is constant the point M describes an ellipse.

(STEINER, LEMOINE, and NEUBERG.)
162. There exists an ellipse which has the incentre of the triangle ABC

for its centre, and which passes through A', B', C' the feet of the internal

bisectors AI, BI, CI. Its equation in normal co-ordinates is

x\b + e - a] + y*(c -f a - b) + z\a +b-c)- layz
- 2bzx - 2cxy = 0.
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I IRv
/

;

V 2

v
The semi-axis of this conic are r and /

;
the major axis is parallel to

V 2

the line joining the feet of the external bisectors of the triangle ABC.

(DE LONGCHAMPS.)

163. Let Mi, MI, My be the points of intersection of the sides BC, CA,

AB, of a triangle ABC, with the lines AM, BM, CM joining the summits

with any point M. The conic which has M for centre, and which passes

through MI, MI, Ms has for its equation, in barycentric co-ordinates

tt^ cuS'vi

2 -;: (0i + -yi
-

01)
- 2 2 -^ = D,

01* oipi

i, 81, 71 being the co-ordinates of M. (!BID.)



NOTES.

I. PAGE 60. EXAMPLE 6.

This theorem, heing subsequently quoted, should he proved.

On AB, CD as diameters describe circles. Let 0, 0' be their centres,

P one of their points of intersection : then OPO' is equal to one of the

angles of intersection of the circles. Now if the sides OP, PO', (/O be

denoted by a, b, c, we have

. CD),

or denoting the angle OPO' "by 6, we have sin2 = CA / CD : BA / D,

and similarly for the other ratios.

II. PAGE 128.

It should be shown that the circle whose equation is

ftysinA + 7asin^ + aj8sinC
f = 0,

passes through the cyclic points. The co-ordinates of the cyclic points

./. are
,-
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substituting those of /., we get

* (fl+v)
. sin^ + /<*+a>

. sinl? + e
i(a+n

. sintf = 0,

or [cos ( + 7) + tsin()3 + 7)]sm()3-7) + &c.-f &c. = 0,

which being simplified, vanishes identically. Hence the circle passes

through /. Similarly it passes through /.

III. PAGE 135. EXAMPLE 6.

We give the proof here for a similar reason to that in Note J.

Transform the equation

(a + + 7) (la + mp + ny)
-

(at&y + b*ya + c2a)8)
=

into Cartesian co-ordinates by the substitution

a = $aysinC, P = %bzsinC, y = \ (ab ay - bx) sin <?,

andtwe get

z2
+2/

3 + 2xycosC + (m-n-a?)z/ a-\- (l-n-b*)y / b + n =
0,

which denotes a circle such that the powers of the points A, , C, with

respect to it, are respectively I, m, n.

IV. PAGE 159. EQUATION 383.

This requires a short discussion.

Let 2o be the angle, between o and TT, which has for tangent 2A / (a- b).

Then we can put 26 = 2a -f nir. Hence

=
a, a+w/2, a + 27r/2, or a+3ir/2.

These values give four possible distinct positions for the new positive

axes, viz.

(ox
1

,
OT 1

), (or, ox"), (ox", or"), (OY", ox').

That is, we can turn the primitive axes OX, OY through any one of the

four angles a, a + w/2, a+2ir/2, a + Sir/ 2, in order to get the new

axes. Taking =
a, from (379), (380), we infer

a-b
cot20]Ln

/ a -b\ 2
~\

in2 fl

[l
+

( J J.
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And since sin 20 is positive, a' b' has the same sign as 1h. Than

a' - V = -f R or - E.

According as A is positive or negative.

X
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ABSCISSAE, 4.

Allersma, 218.

Andre Desire", 28.

Angle between two lines whose carte-

sian equations are given, 36,
37.

same for trilinear equations, 73.

between two lines given by a

single equation, 53.

between two tangents to an

ellipse, 224, 234.

same expressed in terms of focal

vectors to points of intersection,
225.

between focal vectors bisected by
tangent and normal, 221.

between central vector to, and
normal at, a point on ellipse,
244.

between tangents to a parabola
in terms of their lengths and
chord of contact, 191.

between focal radius vector and

tangent, 221.

between asymptotes, 166, 268.

of intersection of two circles or

curves, 107.

of intersection of two parabolae,
199.

eccentric, 206.

intrinsic, 176, 177.

same half polar angle of point on

parabola, 191.

first and second, of Steiner,
426.

subtended at focus by portion of

variable tangent interceptedby
two fixed tangents, 238.

the Brocard, 64, 409, 411, 459.

Angles
eccentric, of extremities of conju-

gate diametershow related, 209.
sum of for four concyclic points

on conic, 241, 280.

theorems concerning, how pro-

jected, 353.

Anomaly.
true, 189, 236.

eccentric, 206.

Antifoci, 311, 512.

Antiparallel, 77.

Anharmonic ratio of four collinear

points, 55, 163.

of four rays of a pencil, 57.

of four lines whose equations are

given, 59.

of four conies of a pencil of conies,

474.
six of four points, 59.

same expressed by trigonometrical

ratios, 60.

of four collinear points equal to

that of pencil formed by their

four polars, 106.

of four tangents to a conic, 385.

of pencil from variable point to

four fixed points on conic, 343.

of pencil formed by two legs of

an angle and the isotropic lines

of vertex, 353.

of pencil from any point of conic

through four tixed points, to

the four points, 473.

of pencil same as that of the

four points in which any trans-

versal is cut by rays, 58.

of points in two projective rows,

372.

20
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Anharmonic ratio of rays in two pro-

jective pencils 375.

of double points and homologous
point pairs, 376.

of four points in which tangent
at any variable point meets

tangents at four fixed points on

conic, 344.

of pencil unaltered by projection,
351.

Apollonius,
circles of, 146.

first and second theorems of, 210.

Areas, signs of, 2.

Area
of triangle or polygon in terms of

co-ordinates of vertices, 10,
79.

of triangle formed by three lines

whose equations are given, 81.

of triangle formed by a given line,
and a given line pair, 80.

of triangle formed by three points
on a conic, 11, 12.

of triangle formed by focus and
two points on parabola, 196.

of triangle formed by two tangents
and chord of contact, 104, 196,
240.

of triangle formed by three tan-

gents to hyperbola, 271.
of triangle formed by three tan-

gents to a parabola half that

formedbypointsofcontact, 179.

of triangle formed by asymptotes
and any tangent, 271.

of triangle formed by three points
on, or three tangents to, an

equilateral hyperbola, 283.

of triangle formed by three points
in tripolar co-ordinates, 306.

of triangle formed by asymptotes
and normal at any point on an

equilateral hyperbola, 282.

of triangle formed by joining ex-

tremities of conjugate semi-

diameters, 210, 259.

of triangle self-conjugate with

respect to, inscribed in, or cir-

cumscribed to, a conic, 243.

of triangle which is the harmonic
transformation of a given tri-

angle, 299.

Area of triangle which is the pedal tri-

angle of a given point, 297.
of triangle which is the polar re-

ciprocal of a given triangle,
299.

of parallelogram circumscribed to

ellipse, 210.

of parallelogram formed by
asymptotes and parallels to-

them through any point on

curve, 269.

of parabolic sector, 199.

of hyperbola and hyperbolic
sector, 273-275.

conic given by general equation,
331.

Argument, 24.

Aronhold's notation, 333.

Artzt, 292, 537.

Asymptotes
defined, 166.

hyperbola referred to, as axes,

167, 269.

of conic given by general equa-

tion, 166, 465.

of equilateral hyperbola are at

right angles, 1C6, 268.

intersect in centre, 167.

secant of half angle between, gives

eccentricity, 268.

equation of, for hyperbola, 268,

279.
are self-conjugate, 167.

equation of, differs from equation
to curve by a constant, 268.

chord of contact of, 167.

divided homographically by pa-
rallels to from a series of points
on curve, 280.

polar of any point on either is

parallel to that one, 281.

equal intercepts on any chord be-

tween curve and, 270.

lines joining extremities of any
diameter to extremities of

conjugate are parallel to,

268.

points of intersection of any

tangent with, and two foci

are coneyclic, 281.

constant length intercepted on, by

joins of variable to two fixed

points on curve, 27 1
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Arcs of conies, theorems concerning,

322, 323, 324.

Axes

rectangular and obliqiie, 4.

transverse and conjugate, 203.

of conies, 158.

of conic given by general equa-
tion, 519.

are parallel to a pair of conjugate
diameters of conic in whose

equation coefficient of xy
vanishes, 157.

magnitude and direction of, given
two conjugate diameters of

conic, 210, 271.

of conies confocal with, a given

one, and passing through a

given point, 232, 233.

lengths of, for conic given by
general equation, 330.

of parabola, 158, 159.

of similitude, 119.

of perspective, 72, 130.

radical, 115.

radical, of three circles are con-

current, 116.

Bisectors

of sides or angles of a triangle are

concurrent, 62.

of angles between lines given by
a single equation, 53, 54, 465.

Boscovich, method of generating

conies, 205, 253.

Brianchon's theorem, 147, 319.

Briot and Bouquet, 21.

Brocard, 166, 174, 179, 195, 198, 441,
459.

Burnside, 225.

Cathcart, 510.

Cayley, 468, 499, 539.

Centre,

theory of mean, 1416.
of circle, 97,
of circle, cutting three circles

orthogonally, 117.

of incircle, in terms of co-ordi-

nates of vertices and lengths of

sides, 16.

of conic, 153, 154, 203, 251.

of curvature, 185, 186, 216, 264.

of parabola, 154.

* 2o

Centre of inversion. 408, 411.

of involution, 379.

pole of line at infinity, 167.

radical, 117.

of similitude, 118, 393.

of similitude, six of three circles,

lie three by three on four right

lines, 119.

of reciprocation, 385.

reduction of general equation to,

155.

recherche of, 154.

of perspective, 72, 130.

line of centres, 155.

Chasles, 219, 225, 235, 324, 343.

Chord
_

joining two points on circle, 102,
130, 133.

joining two points on conic, 175,
208.

of contact of two tangents to a

conic, 183, 223, 256.

of conic which touches confocal,

proportional to square of pa-
rallel semidiameter, 225.

locus of pole of, subtending a

right angle at a fixed point,
104, 195, 277.

through a focus, 183, 222, 277.

Chords,
locus of middle points of parallel,

155, 156, 179, 208, 255.

of intersection of two conies, 213.

of contact of common tangents to

two circles, 103.

conjugate, 158.

supplemental, 213.

Circle,

equation of, 96, 108-111.

auxiliary, 206, 266.

Boscovich, 205.

Brocard, 408, 411, 422, 524.

centre of, 117.

circum, of triangle of reference,
128.

circum, is polar conic of symme-
dian point, 127.

circum, in barycentric co-ordi-

nates, 131.

circum, of polygon, 129.

circum, of triangle formed by
three tangents to a parabola,

passes through focus, 178, 190.



552 Index.

Circle circumscribed to quadrilateral,
143.

cutting three given circles at given

angles, or orthogonally, 108,
149.

director, 164.

diameter of, cutting three given
circles orthogonally, 148.

equation of, on join of two points
as diameter, 77, 150.

equation of, referred to two tan-

gents and chord of contact, 143,
342.

equation of tangents from any
point to, 103.

focal, 311.

geometrical representation of

power of point with respect to,

98.

having side of triangle of reference

as diameter, 144.

having triangle of reference as

autopolar triangle, 339.

having as diameter chord of con-

tact of tangents to a given
circle from a given point,
102.

having as diameter the intercept
made by a given circle on a

given line, 100.

I)r. Hart's, 147-

inscribed in triangle of reference,
131.

JoachiwsthaVs, 185, 187, 188,

218, 264.

Lionnets', 401.

Lemoitie, 419.

nine-points, 125, 126, 147, 303,

434, 435, 444, 445, 451, 454.

nine-points, touches both in- and

ex-circles, 125, 138, 149.

of inversion, 104.

of curvature, 185, 312.

of reciprocation, 386.

of similitude, 119, 395.

orthoptic, 164, 509, 510.

orthogonal projection of, 206.

osculating, 189.

orthocentroidal, 436.

pedal of a given point, 137.

Steiner's, 315.

tangential equation of, 138, 139,

140, 141, 143.

Circle through 3 points, 110, 111,
136.

touching three others, 110, 111,
121.

through feet of perpendiculars,
144.

Circles,

annex, 401.

all pass through cyclic points,
308.

a system of tangential, 120.

of Apollonins, 146.

coaxal system of, 114.

concentric, when, 97.

concentric, have double contact at

infinity, 328.

equation of, in pairs, touching
three given circles, 120.

escribed to triangle of reference,
132.

Fuhrman's, 431.

M'Cay's, 427, 454.

Mutual power of two, 107, 108.

Neubergs, 423-427, 443, 444,

452, 459.

Tucker's, 415, 419, 421.

Clebsch, 333, 337, 462.
Coates' theorem, 68, 93, 127.

Complex variables, 24.

Concomitant, mixed, 463, 517.

Condition that a line should pass

through origin, 33.

that a line should pass through a

given point, 86, 89.

that a line should be perpendicular
to itself, 76.

that a line should cut a conic in

two points which subtend a

right angle at the origin, 348.

that a line should touch a conic,

161, 163, 261, 335.

that a line may be cut harmoni-

cally by two conies, 371.

that a line should be cut in invo-

lution by three conies, 505.

that two lines should intersect on
a conic, 336, 520.

that two lines should be at right

angles, 36, 37, 53, 74.

that three lines should be concur-

rent, 48.

that two lines should be parallel,

36, 74.
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Condition that a circle may be cut

orthogonally by four given
circles, 110.

that any number of circles may
have one common tangential
circle, 122.

that two circles should touch,
107.

that two circles should cut ortho-

gonally, 107.

that four circles should cut a fifth

orthogonally or be tangential to

it, 112.

that two circles should be con-

centric, 97.

that two conies should be homo-

thetic, 326, 327.

that two conies should touch,

osculate, 309, 469, 471.

that two conies inscribed in the

same conic should cut orthogo-

nally, 495.

that two conies are so related that

a triangle may be inscribed in

one and circumscribed to the

other, 468.

that three conies may have a

common point, 517.

that four conies should cut a fifth

orthogonally or be tangential to

it, 497.
that a triangle self-conjugate

with respect to one conic may
be inscribed in, or circumscribed

to, another, 475.
that a triangle may be circum-

scribed to one conic and have
its vertices on three other

conies, 485.

that a triangle may be inscribed

in one conic, and have its sides

touching three other conies,
484.

that triangle of reference may be

in perspective with one the co-

ordinates of whose vertices are

given, 82.

that general equation should re-

present two right lines, 51, 52,
334.

that general equation should re-

present a circle (in Cartesian

co-ordinates), 96.

Condition that general equation should

represent a circle in normal co-

ordinates, 134.

that general equation should re-

present a circle in barycentric
co-ordinates, 137.

that general equation should re-

present an ellipse, a parabola,
or hyperbola, 340.

that general equation should re-

present an equilateral hyperbola
or a parabola, 509.

that when general equation re-

presents two lines they should
be parallel or perpendicular,
77.

that three points may be collinear,
8.

that two points may be conju-

gate with respect to a conic,
334.

that two points may be conjugate
with respect to two lines,
336.

that two-point pairs should be
harmonic conjugates, 57, 368.

that four points should be con-

cyclic, 110.

that four points on conic should

be concyclic, 241, 2SO.

that three-point pairs should

form an involution, 379.

that four convergent rays should

form a harmonic pencil, 59.

that normals at three points on

parabola should be concurrent,
188.

that normals at three points on

ellipse, should be concurrent,
215.

that joins of vertices of triangle
of reference to points in which

general conic meets sides should

form two concurrent triads,

527.

that la + m& + ny = O should be

antiparallel to 7 = o, 77.

that intercept made by circle on

line should subtend a right

angle at a fixed point, 100.

Cone,

right and oblique, sections of,

363.
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Confocal conies, 224-227, 232-236,
239, 247, 248, 279, 311, 324,

331, 332.

conies are inscribed in the same

imaginary quadrilateral, 311.

conies, cut at right angles, 333.

conies, general equation of, 312,
612.

conies, length ofarc intercepted be-

tween tangents from, 322-324.

Conic,
number of conditions sufficient to

determine a, 170.

eight points of contact of common
tangents to two conies lie on a,

488.

nine-point of quadrangle, 165.

equation of, given focus and three

tangents, 391.

isotomic transformation of, 296.

isoptic curve of, 184, 520.

polar conic of point, and pole of,

27.

which reciprocates the Brocard

ellipse into Kieperfs hyper-
bola, 509.

fourteen-point, 487.
fourteen- line, 490.

through five points, description

of, 172.

Conies,
classification of, 165.

diametral, 445.

conjugate with respect to quadri-
lateral, 614.

homothetic, 326.

for which 0i and 2 vanish, 482.

harmonic properties of, 479.

harmonic system of, 482.

invariant theory of, 462.

invariant angles of two, 471.
mutual power of two, 493.

orthogonal, 499.

osculation of two, 471.

point and line harmonic conies

of two, 371.

pencil and net of, tangential and

trilinear, 463.

Conjugate diameters, 157, 258.

equation of conic referred to as

axes, 211, 259.

are parallel to a pair- of supple-
mental chords, 213.

Conjugate sum of squares of, 209.
eccentric angles of extremities

of, 209.

area of triangle included by,
210, 259.

Conjugate points and lines, 106, 334,
336.

hyperbola, 257.

Conjugates,
harmonic, 13, 56, 117, 368, 369.

isotomic, 13, 65.

isogonal, 63.

Constants, 31.

Contact,
of different orders, 309,

double, 318, 513.

four-pointic, 318, 321.

Contravariants, 508.

Co-ordinates,
areul or barycentric, 64.

areal of some important points, 66.

biangular or biradial, 61.

Cartesian, 4.

current, 31.

complementary and anticomple-
mentary of a point, 81.

elliptic, 233.

normal or trilinear, 61.

normal of some important points,
64.

of point of intersection of two
lines whose equations are given,
42.

of point of intersection of two
lines given by a single equation,
62.

of point dividing in a given ratio

the join of two given points,

12, 65.

of orthoccntre of triangle formed

by tangents to ellipse and
chord of contact, 245.

of incentre of triangle in terms
of co-ordinates of vertices and

lengths of sides, 16.

of double points, 334.

of pole of line with respect to

conic, 338.

polar, 17.

tripolar or tricyclic, 301.

transformation of, 19.

tangential or line, 86.

point and line, comparison of, 86.
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Covariant, 462, 477.

Cremona, 349.

Crofton, 136, 239, 244, 279, 284,

322, 344, 528, 530, 531, 633,

536, 540.

Curtis, Prof. S. J., 145, 146, 477,

478, 527, 528, 534.

Curvature,
radius of, 185, 186, 216,264, 313.

circle of, 185, 312.

centre of, 185, 186, 216, 264.

Curve, Hermite, 506, 507.

isoptic, of conic, 520.

Curves, pencils of, 114.

Cubic, the seventeen point, 460.

Dandelin and Quetelet, 365.

D'Ocagne, 526, 531.

Darboux, 111.

De Longchamps, 436, 461, 545.

Desargues, 521.

Descartes, 5.

Determinant, 40, 41, 74, 80, 108.

of transformation, 462.

Dewulf,
Diagonal,

triangle, 69.

points, 71.

Diameters, 155, 179.

equation of pair of general conic,
534.

conjugate, 157, 534.

equiconjugate, 534.

through intersection of two tan-

gents bisects chord of contact,

108, 212, 261.

Distance,
between two points, 6, 78.

between centres of two circles,

107.

of point from vertices of triangle
of reference, 79.

of four points in plane, how con-

nected, 29.

between points of intersection of

a given line with two given
lines, 79.

Director circle, 164.

Directrix, 173,201.223, 250,311,510.
Discriminant, 51, 334.

Double contact, 318, 320, 513.

equation of two conies having
doublecontact with athird, 318.

Double contact, properties oftwo conies

having double contact with a

third, 319.

properties of three conies having
double contact with a fourth,

319, 320.

problem to describe one conic

touching three others, each

having double contact with a

fourth, 499.

equation to same, 498.

lines and double points, 285.

Eccentric angle, 206.

angles, sum of, for four concyclic

points on conic, 241, 280.

angles, sum of, for feet of normals
to ellipse, 220.

angles of extremities of conjugate
diameters, 209.

Eccentricity, 201, 250.

of conic given by general equa-
tion, 532.

of any section of cone, 366.

of hyperbola and conjugate, how
related, 279.

Ellipse, 201-249.
area of, given by general equa-

tion, 331.

axis of confocal, 232.

equation of, referred to pair of

conjugate diameters, 211.

equation of, referred to the equi-

conjugate diameters, 212, 279.

evolute of, 216.

polar equation of, with focus as

pole, 236.

the Brocard, 391, 408, 411, 420.

equation of tangent and normal

to, 208, 214,

polar equations of tangent and

normal to, 237.

orthoptic circle of, 224.

parallel to, 470.

parallel to, reciprocal of, 634.

pedal of, with respect to focus,

221.

pedal of, with respect to centre,

241.

reciprocal polar of, 228.

Steiner's, 362, 421, 451.

Elliptic co-ordinates, 233.
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Envelope
of axis of perspective of a tri-

angle circumscribed to one
conic and its polar reciprocal
with respect to another, 479.

of chord of conic subtending
a right angle at a fixed point,
358.

of chord of contact of tangents
to a hyperbola from any point
on conjugate hyperbola, 262.

of chords of osculation of para-
bola, 189.

of chord of conic subtending a

right angle at focus, 524.

of line joining extremities of

conjugate diameters of ellipse,
241.

of line, if sum of squares of

perpendiculars on it from any
number of fixed points be

constant, 347.

of line, the product of the per-

pendiculars on which from
two fixed points is constant,

221, 266.

of line cutting three conies in

involution, 505.

of line cutting a conic in points
whose join subtends a right

angle at origin, 348.

of line which cuts two conies

harmonically, 371.

of line joining extremities of

two perpendicular central vec-

tors of ellipse, 242.

of line joining corresponding

points on two lines divided

homogniphically, 385.

of lines whose poles with respect
to three conies are collinear,
507.

Hermite, of a net of conies, 506.

of the eight tangents to two
conies at their points of in-

tersection, 490.

of the sides of Kieperfs tri-

angles, 458.

of the polar of a given point
with respect to any circum-
conic of a quadrilateral, 386.

of the six sides of two inscribed

triangles of a conic, 386.

Envelope of a system of confocal

conies, 347.

of polar of a given point with

respect to a confocal system
of conies, 348.

of third side of a triangle in-

scribed in a conic, two of

whose sides touch another

conic, 348, 529.

of Tucker's circles, 421.

Envelopes, theory of, 346.

Equation,
defined, 33.

of axes of conic, 159, 519.

of asymptotes of conic given by
general equation, 166, 465.

of bisectors of angles between
two lines, 53, 54, 465.

of bisectors of angles, of medians,
and of perpendiculars of tri-

angle of reference, 62.

of Brocard line and diameter, 67.

of circle circumscribed to tri-

angle of reference, 127, 128.

of circle inscribed in or escribed

to triangle of reference, 131.

of circle cutting three given
circles at given angles, 108.

of circle cutting three given
circles orthogonally, 109, 149.

of circle through three points,

110, 136.

of circle on join of two points
as diameter, 77, 99, 150.

of circles in pairs touching three

given circles, 120.

of eight circles tangential to

three given circles, 109.

of conic referred to tangents
and chord of contact, 308.

of the cyclic points, 75, 88,
509.

of conic referred to focus and

directrix, 338.

of conic confocnl with a given
one, 312, 512.

of conic confocal with a given
conic and touching a given
line, 529.

of conic having double contact

with two conies, 318.

of conic, given focus and three

tangents, 391.
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Equation of conic having triangle of

reference as autopolar triangle,
337.

of four conies having double
contact with a given conic
and passing through three

given points, 522.
of directrix of parabola, 164.
of directrices of Srocard^s

ellipse, 421.

of Hitler's line, 67.

of evolute, 187, 216, 264.

of four common tangents to
two conies, 488.

of four tangents to a conic at

points of intersection by
another conic, 491.

of foci, 322.

general, of line or curve through
the intersection of two lines

or curves, 39, 40.

general, of three concurrent

lines, 62.

general, reduction to normal

form, 158.

homogeneous represents lines

through the origin, 51.

of join of two points, 40, 66.

of join of two points on circle,

102, 130, 133.

of join of two points on conic,

176, 208, 270, 338, 3*2.
of line through a given point
making a given angle with a

given line, 44, 45.

of line through a given point
parallel to a given line, 76.

of line perpendicular to the

given line, 45, 76.

of line joining centre and sym-
median point, 67.

of line dividing angle between'
two lines into parts whose
sines have a given ratio,
46.

of lines equally inclined to bi-

sectors of angles of triangle
of reference, 63.

of medians of triangle, 41, 62.

of normal, 184, 190, 214, 237,

262, 273.

of orthoptic circle of conic, 164,

224, 341, 510.

Equation of point pair in which a line

intersects a conic, 336.

of polar of a given point, 105,
163.

of perpendiculars of triangle,

49, 62.

of reciprocal of conic, 387.

result of substituting 'co-ordi-

nates of a point in, 37, 98,

137.

of symmedian lines, 63.

of six common chords of two
conies, '465.

of tangent to circle, 101, 130,
134.

of tangent to conic, 129, 161,

176, 189, 208, 237, 256, 271,

273, 338, 342.

of tangent pair from point to-

curve, 103, 163.

of tangent to nine-point circle,

at its point of contact with

incircle, 126.

tangential, 138, 161, 335.

Fagnanis' theorem, 227.

Faure, 524, 526, 541.

Figures,
complimentary and anticompli-

mentary, 81.

inversely similar, 285, 393, 395.

Focus, 173, 201, 250, 211, 322, 511,

512, 532.

of parabola touching four right

lines, 178.

Fregier's theorem, 227.

Frobenius, 111, 495.

Geometrical signification of the

vanishing of a coefficient in

general trilinear equation of

the second degree, 337.

Gob, 85.

Graves, .Dr./ 311, 322.

Gugler, 360.
'

Gundelfinger, 473, 490.

Hamilton, Sir William, 205, 253.

law of force, proof of, 232.

Hart, Sir A., 132.

Hadamard, 299.

Harmonic chords, theory of, 406.

system of conies, 482.
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Hesse, 32, 516.

Hermes, 95.

Hermite envelope of net of conies,

506.

Hervey, 94.

Hexagon,
Lenwine, 419.

harmonic, 437.

Homothetic figures, 326.

Homographic division, theory of, 368.

Homogeneous equations represent
lines through the origin, 51.

Hyperbola, 251.

Apollonian, 453, 504, 217, 264.

conjugate, 258.

conjugate, polar equation of, 267.

co-ordinates of point on, expressed
in terms of a single variable,
245.

equation of, referred to conjugate
diameters, 259.

equation of asymptotes to, 268.

equation of tangent and normal

to, 256, 262. 273.

equilateral, 252.

equilateral, polar equation of,

267.

equilateral, area of between

asymptotes and two diameters,
273.

equilateral, generation of, 289.

polar equation of, centre being
pole, 267.

polar equation of, focus as pole,
272.

tangents at extremities of focal

chord meet on directrix, 277.

Kiepei-t's, 431, 442-445, 449,

452, 453.

Jerabek's, 448, 449, 483.

Hyperbolae, Neuberg's, 429, 430, 431,
540.

Hyperbolic functions, 275.

Identities, 520.

Infinity, equation of line at, 74.

every parabola touches line at,

308.

centre is pole of line at, 167.

Intersection of line and conic, 153.

of two lines, co-ordinates of, 42.

of two lines given by a single

equation, co-ordinates of, 52.

Invariants, 159.

calculation of, 467.

number of independent, &c., of

two conies, 517.

Invariant angles of two conies, 471.

harmonic, of a system of conies,
482.

orthogonal, of a system of conica,

495.

tact, of two conies, 469.

tact, of product of six anharmonic

ratios, 472.
Inverse points and lines, 105.

Inversion,
of line or circle with respect to

circle, 105.

quantities unaltered by, 113.

Involution, central point of, double

points of, hyperbolic, elliptic,

symmetric, isogonal, 378-380.

Isogonal transformation, 428.

Jacobian, 502, 517.

Jacoby, 503.

Jerabek, 448.

Joachimsthal, 220, see circle.

Join of two points, 8.

Jonquiers, De, 481.

Kiehl, 297, 302.

Koehler, 484.

Lachlan, 111, 114, 138.

Lagrange, 27.

Laguerre's theorem, 219.

Laisant, 94, 143.

Lame", 172, 233, 465.

Lame's equation, 462.

Latus rectum, 160, 174, 203, 252.

Lemoine, 144, 418, 529-531, 544.

Length of axes of conic given by
general equation, 330.

of perpendiculars from foci on

tangent, 220, 265.

of perpendicular from point to

line, 37, 38, 39, 73.

of direct common tangent to two

circles, 106.

Lhmlier's problem, 359.

Limiting points of a coaxal system,
115, 117.
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Line, Euler's, 67, 449.

Pascal's, 328.

Simson's, 136.

Lines, conjugate, 106.

double, 285.

four coneyclic, 200.

inverse, 105.

isotropic, 75.

symmedian, 63, 440.

Locus,
of centre of conic through four

points, 171.

of centre of circle harmonically
circumscribed to parabola,
521.

of centre of conic inscribed in a

quadrilateral, 355, 383.

of centre of equilateral hyperbola
described about a given tri-

angle, 26G, 290.

of centre of circle touching fixed

line and circle, 196.

of centre mean of feet of normals
to a parabola, 185.

of centre of conic through three

points, having an asymptote
parallel to a given line, 172.

of centre of reciprocation, when
reciprocal conic is an equi-
lateral hyperbola, 386.

of centre of conic harmonically
inscribed in four conies, 478.

of centre of curvature, 187.

of centre of inconic through cir-

cum- and orthocentre, 342.

of centre of conic touching four

given lines, 526.

of centre of circumcircle, given
three tangents and sum of

squares of axes, 527.

of centre, given a self-conjugate

triangle and a tangent, 533.

of centre of Brocard ellipse, given
base and Brocard angle, 534.

of incentre given base and sum
of sides, 204.

of double points of a given net of

conies, 501.

of double points of lines cutting
three conies in involution, 503.

of focus of variable conic, given
tangent, one focus, and eccen-

tricity, 531.

Locus of foot of perpendicular from
focus on tangent, 177, 178,

221, 266.

of intersection of tangents at

extremities of a pair of con-

jugate diameters, 241.

of intersection of normals at ex-

tremities of a chord passing

through a given point, 188,
466.

of intersection of tangents at two

points, whose join subtends a

given angle at focus, 524.

of middle points of a system of

parallel chords of a conic, 155,

156, 179, 255, 208.

of middle points of chords of

ellipse passing through a given
point, 239.

of middle points of variable

chords of a circle subtending
a right angle at a given point,
101.

of middle points of chords of

parabola subtending a right

angle at the vertex, 196.

of orthocentre, given base and
vertical angle, 99.

of point whence sum of tangents
to two circles is given, 239.

of point the area of whose pedal

triangle is given, 135, 297.

of point whence tangents to conic

contain a given angle, 184,
520.

of point, fixed in line of given

length sliding between two
fixed rectangular lines, 205,
213.

of point whence tangents to

two confocals are at right

angles, 225.

of point whose pedal triangle has

a constant Brocard angle, 300.

of point where parallel chords of

a conic are cut in a given

ratio, 355.

of point whose polars with re-

spect to three conies are con-

current, 502.

of point whence tangents to three

conies form a pencil in invo-

lution, 507.
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Locus of point whose polars with re-

spect to two circles meet on a

given line, 526.
of point the chord of contact of

tangents from which to a given
circle subtends a right angle
at a given point, 104.

of points of contact of parallel

tangents to a system of con-
focal ellipses, 236.

of points having the same eccen-

tric angle on a system of con-
focal ellipses, 236.

of points the sum of the squares
of the sides of whose pedal
triangles is given, 300.

of points on a system of conferal

conies, the osculating circle at

which passes through a focus,
331.

of points whence tangents to two
conies form an harmonic pencil,

370, 477.
of pole of a chord of a conic sub-

tending a riht angle at a given
point, 195, 277.

of pole of line with respect to a

confocal system, 235.

of pole of normals to ellipse, 241.

of pole of chord of equilateral

hyperbola such that the oscu-

lating circle at cne extremity
passes through the other, 284.

of pole of variable chord passing
through a given point, 341.

of pole of line with respect to an
inconic satisfying any con-

dition, 339.

of symmedian point, given base
and vertical angle, 331.

of symmedian point, given base
and area, 525.

of vertex, given base and vertical

an'ule, 99.

of vertex, given base and sum of

sides, or product of tangents of
base angles, 204.

of vertex, given base and differ-

ence of sides, or difference of
base angles, 252.

of vertex of a given triangle
whose two other angular points
move on two fixed lines, 213.

Locus of vertex, given base and
Brocard angle, 423.

of vertex of all right cones out of
which a given ellipse can be

cut, 367.

of vertex of a triangle circum-
scribed to one conic, two of
whose angular points move on
another conic, 486.

of vertex of triangle self-conju-

gate with respect to one conic,
two of whose vertices lie on
another conic, 527.

of vortex of a circum. polygon of

a conic when all the other ver-

tices move on confocal conies,
324.

of vertex of a variable triangle
whose sides pass through fixed

points, and whose base angles
move on fixed lines, 376.

Lucas, 283, 304, 306.

Maclaurin's method of generating
conies, 376.

Malet, J. C., 471.
Malet's theorem, 317.

Mannheim, 211, 220,

Mandart, 461, 544.

Mathesis, 306, 429, 441.

Mathie u, 68.

M'Cay, 96, 247, 332, 403, 404, 446,

447, 459, 525.

M'Cay's extension of FeurbacHs theo-

rem, 329.

M'Cullagh, 242, 243, 324, 362.

Minors, 52.

Modulus, 24, 137.

Modular quadrangle,

Negative, 1, 5.

Neuberg, 28, 29, 50, 90, 91, 93, 94,

143, 144, 150, 198, 200, 242,

300, 301, 302, 303, 314, 315,

360, 361, 363, 367, 398, 400,

401, 404, 423, 429, 441, 459,

460, 461, 519, 531, 633, 636,

637, 538, 539, 540, 543, 544.

Neuberg and Gob, 458, 459.

Neuberg and Schoute, 300, 537, 543.

Newton's theorem, 167.

method of generating conies, 376.
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Newtonian of quadrilateral, 91.

Nine-point circle, 125, 126, 144, 302,

434, 435, 444, 445.

conic, 171.

Norm, 121, 122, 139.

Normal, 184, 214, 262.

sub, 184.

polar equation of, 190, 237, 273.

Normals,
three can be drawn from any

point to parabola, 184.

four can be drawn to ellipse or

hyperbola, 216, 264.

feet of, from any point to parabola
lie on circle, 185.

feet of, to ellipse or hyperbola lie

on hyperbola, 216, 264.

Number of conditions to determine a

conic, 170.

of independent invariants, &c., of

two conies, 517.

Ordinates, 4.

Origin, 1, 5.

change of, 152.

Orthocentre,
co-ordinates of, 64, 66.

of triangle formed by three tan-

gents to a parabola, 172.

of triangle is a point on directrix,

178.

lies on circumscribing equilateral

hyperbola, 290.

join of to centroid, 67, 77.

Orthogonal

system of circles, 107, 109, 110,

117, 118.

conies, 495, 497, 499, 601, 502.

invariant of two conies, 495.

projection of circle, 206.

Orthologique triangles, 50.

Osculation, 309, 471.
chord of, 313.

four chords of through any point
in plane of conic, 314.

hyper, 318, 321.

Osculating circle, 185, 309, 310.

circles, six of given conic can be
described to cut a given circle

orthogonally, 316
;
and their

centres lie on a conic, 317.

conic of a given circumconic, 310.

Pascal's theorem, 145, 328.

theorem proved by projection,
354.

theorem, reciprocal of, 385.

Parabola, 154, 157-160, 169, 173-
200.

referred to any diameter and

tangent, 182.

axis of, 158, 159.

centre of, 154.

directrix of, 164.

co-ordinates of origin in, 1(50.

every, touches line at infinity,
308.

is first negative pedal of right

line, 178.

a tangential equation of, 198.

parameter of, 115, 160, 203.

polar equation of, focus being

pole, 189.

pedal of, with respect to focus,

178.

subnormal in constant, 184.

Purser's, 220.

Kiepert's, 458.

Parabolse,

Artzfs, 441, 483.

Artzt's directrices of, 442.

Brocard, 439.

Pedals, positive and negative, 177,

221, 266, 416.

Pedal and antipedal triangles, 296.

Pedal and antipedal triangles, area

of, 297.

Pencil, of conies, 463.

of lines when harmonic, 59.

Pencils, inversely equal, 288

Perpendicular, length of from point
to line, 37, 73.

Perpendiculars of triangle are con-

current, 62.

Perspective,

triangles in, axis and centre of,

72.

axis of, is trilinear polar of centre

of, 130.

triangles in multiple, 82.

triangle of reference and that

formed by tangents tc cir-

cumconic at vertices are in,

129.

Plucker, 540.

Pohlke, 205.
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Point,

director, 399.

power of, 37.

Steiner's, 133.

Tarry's, 446, 452.

Points,

co-ordinates of a few important,

64, 66.

adjoint, 399.

Brocard, 64.

complimentary and anticompli-

mentary, 81.

conjugate, 106.

cyclic, 75, 88.

diagonal, 71.

distance between two, 6, 78.

double, 285, 376, 393.

double, found geometrically, 377.

harmonic system of, 56.

invariable, 397.

inverse, 105.

isobaryc group of, 85.

isodynamic, 303.

limiting, of coaxal system, 115.

NageVs and Gergonne, 95, 133,

394, 409, 461.

symmedian, 407, 438, 456.

twin, 292.

twin, are isogonal conjugates of

inverse points with respect to

circle, 293.

which correspond to infinity, 373.

Polar co-ordinates, 17.

Pole and polar trilinear, 68.

Pole and polar of circle, 105.

Poles and Polars, 163.

Pole normal, 218.

Polar reciprocal of curve, 228.

reciprocal of one conic with re-

spect to another, 480.

Poncelet, 221, 484, 539.

Positive, 5. ^
Projection, 3, 349.

orthogonal of circle, 206.

of a system of concentric circles,

351.

of a system of coaxal circles, 352.

orthogonal, 358.

Projective properties, 351.

rows, 371.

pencils, 374.

Ptolemy's theorem, extension of,

329.

Purser, F.B.U.I., 248, 249, 331,
357.

Purser, F.T.C.D., 199, 200, 220, 315,

331, 526, 553.

Purser's parabola, 220.

Quadrilateral complete, 69.

complete, each diagonal of divided

harmonically by other two,
70.

harmonically middle points of

three diagonals collinear, 43.

harmonically diagonal points and

triangle of, 69.

harmonically Newtonian of, 91.

standard, 70.

Quadrangle complete and standard,

69, 70.

pencil of, 391.

Quadrangles, metapolar and metapole
of, 392.

modular, 397.

Radius vector, 17.

of circle given by general equa-
tion, 97.

of circle of coaxal system, 115.

of curvature, 185, 186, 216, 264,

313.

of curvature of conic at origin,
310.

Radical axis and centre, 115, 117.

Ratio of section, 55.

Reciprocal polars, 384.

polars, some theorems proved by,
385.

Reciprocation, centre of, 386.

centre of, that polar reciprocal of

a given triangle may be similar

to another triangle, 388.

Reduction of general equation of line

to standard form, 35.

of conic to centre, 155.

Relation between area of triangle,

lengths of its sides, and normal

co-ordinates of any point in

its plane, 62.

between normal co-ordinates of

isogonal conjugate points, 63.

between normal and barycentric
co-ordinates of a point, 65.

between barycentric co-ordinates

of isotomic points, 65.



Index. 563

Relation identical connecting any four

lines no three of which, are

concurrent, 70.

between coefficients of general

equation when it represents a

circle, 134.

between eccentric angles of two

points whose joinpasses through
focus, 222, 277.

between tripolar and normal co-

ordinates, 303.

between Brocard and Steiner

angles, 459.

Relations, three special, which a tri-

angle can have with respect to

a conic, 468.

identical, 513.

Eitchie, 190, 191.

Roberts, R.A., 196, 197, 246, 283,
318, 332.

Roberts, M., 236.

Rule of signs, 1.

Salmon, 68, 70, 321, 333, 344, 371, 465,

473, 477, 479, 487, 530, 532.

Schooten, 213.

Schoute, circles, 300, 403.

Schrbeter, 535.

Self-conjugate or autopolar triangle,
337, 468, 491.

Serret, P., 522.

Similar conies, 326.

conicshaveequal eccentricity, 327.

rows, 373.

Similitude,
centre and circle of, 118, 119.
six centres of, for any three circles

lie three by three on four right
lines, 119.

Simmons, 538.

Smith, H. J. S., 475, 481.

Sollertinsky, 542.

Staudt, 114, 371, 477.

Steiner, 17, 37, 50, 69, 147, 239, 315,

329, 528.

Stewart's theorem (Sequel), 304.

Sum of reciprocals of segments of

focal chords of ellipse, 237.

of eccentric angles of four con-

cyclic points on conic, 241, 280.

of squares of two conjugate semi-

diameters of ellipse, 209.

Sum of reciprocals of two chords of

ellipse at right angles and

touching confocal, 248.

Supplemental chords, 213.

Symmedian point, 63, 407, 413, 418.

lines, 414, 440.

Sylvester, 503.

Tact invariant of two conies, 469.

Tangent, 161.

to circle, 101, 130, 134.

to conic, 161.

at infinity, 166.

to nine-points circle at point of
contact with incircle, 126.

sub, bisected at vertex in parabola,
177.

Tangential circles, a system of, 120.

equations, 161, 335.

equation of all conies confocal

with a given one, 312, 511.

equation of circle referred to two

tangents and chord of contact,

344.

equation of circle, given radius

and centre, 143.

equation of circle circumscribed

to triangle of reference, 138.

equation of circle inscribed in

triangle of reference, 140.

equation of conic, 161, 344.

equation of conic having triangle
of reference as self-conjugate

triangle, 341.

equation of conic given a focus

and circum triangle, 390.

equation of hyperbola, 261.

equation of cyclic points, 75, 508.

equation of centre of conic, 344.

equation of parabola, 198.

equation of four points common
to two conies, 489.

equation of envelope of line cut

in involution by three conies,

505.

pencil and net of conies, 463.

Tarry, 395, 397, 418.

Tesch, 538.

Townsend, 218, 325, 345, 376, 381.

Transformation of co-ordinates,

harmonic, of triangle, 298.

harmonic, area of, 299.

isogonal, 428.
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Transformation of co-ordinates,
determinant of, 462.

of general conic, It52, 155. .*4^

Triangle, diagonal, 69.

Kieperfs, 443.

of similitude, 395.

invariable, 397.

Triangles, annex, 399. [468, 491.

autopolar or self-conjugate, 337,
circum. vertices of two lie on a

conic, 386.

formed by three points and their

three polars with respect to any
conic are in perspective, 340.

inscribed sides of touch a conic,
386.

first and second, of Brocard, 422.

Triangles, Lionnet's, 389, 401, 403,
404.

orthologique, 50.

pedal and antipedal, 296.

Tucker, 441.

Value of k so that S + TcS' = may
be an equilateral hyperbola,
171.

Variables, 31.

complex, 24.

Whewell, 177.

Wright, 149.

\

THE END.
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